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Rubin’s Potential Outcome framework: 

Following Rubin's Potential Outcome Framework [7], each patient 
has two potential outcomes, denoted as Y(0) and Y(1), corresponding 
to Trt=0 and Trt=1, respectively. Only one of them is observed in a 
trial (parallel design)

• I.e., ITE = Y(1)- Y(0) is fundamentally unobservable (“no ground truth 
in the training data”)

 - patient gets either active or control!

Target becomes ∆(x) := E[Y(1)- Y(0)|X=x], where x=(x1,...,xp) is baseline 
biomarkers.

This is CATE (Conditional Average Treatment Effect), ... target in many 
recent papers ...

Subj Trt Y(0) Y(1) ITE

1 1 ? 3 ?

2 1 ? 1 ?

3 0 2 ? ?

4 1 ? 1 ?

5 0 3 ? ?

6 0 0 ? ?
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Stressing

• Target is CATE

 ∆(x) := E[Y(1)- Y(0)|X=x]    as a (multivariate) function of x=(x1,...,xp)

• Might be considered when a trial fails to convince in the average sense.

• Representing an agnostic look at the data “AI style” (Let The Data Speak) 

• Do (at least) some types of patients benefit? If so, can we figure out what is typical 
about them?

• Interestingly, several other industries look at such problems [7] .... (based on Machine Learning).

• ‘Who is more likely to respond to a personalized ad, new policy in society, etc”  

Expected (individual) trt. Effect ... 

... for a patient represented by these covariates
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Prognostic vs Predictive variables

• Target is CATE

 ∆(x) := E[Y(1)- Y(0)|X=x]    as a (multivariate) function of x=(x1,...,xp)

A variable is predictive if CATE varies 
systematically; conversely, prognostic variables 
maintain a constant effect. 

Expected (individual) trt. Effect ... 

... for a patient represented by these covariates
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How to estimate CATE

Method Number of models Propensity? CATE modelling

T-Learner 2 Implicit Y(0) and Y(1)

S-learner 1 Implicit Y(0) and Y(1)

X-learner 5 Explicit Y(0) and Y(1)

Causal Forest 1 Explicit Y(0) and Y(1)

R-learner 3 Explicit Modified outcome

Doubly Robust Explicit Modified outcome

See Jacob [3] on a survey of modern approaches for CATE modelling

T – Learning: Fitting one model to each treatment arm
 1. fit f(x) on each arm
 2. ∆(x) = f1(x) – f0(x)S – Learning: Fit one model on both arms with X*Trt 
interactions
 1. fit f(x) on extended data set
 2. ∆(x) = f(x, Trt = 1) – f(x, Trt = 0) 

Modified Outcome methods target CATE directly without 
modelling each potential outcome. 
- e.g., multiply Y with 2*Treatment (-1 or 1) and regress 
that against X
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Using SHAP to identify predictive biomarkers
• Note: important to note the difference between predictive and 

prognostic

• Y = x_1 + trt + trt*x_2

• Given estimates of CATE,  we regress it against the baseline 
variables:  ∆(x) ~ x

using an xgboost model and derive SHAP from it. 

• We can now use SHAP values to estimate which covariates have the 
largest impact on CATE.

• Instance level SHAP – How does the importance depend on the 
covariate value

• Global SHAP – How important is the covariate compared to other
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Note on SHAPLEY values

• Shapley values is a game theoretical concept, "SHAP" is the version for variable 
importance in Machine Learning.

• Popular, current standard now. Honest estimate of model importance

• But the model might still be wrong!

• In many cases we need an additional model to get SHAP values, but for the modified 
outcome models we can model them directly without an extra model

• However, this does not impact performance!

• Many different SHAP methods available, many very computationally expensive. 
Treeshap is however a good performer and fast to compute. 

• . 
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Simulation Landscape: S2-S3 

•   Simulation No. Prognostic x Trial Type TRT assignment Predictive x

S2 19 RCT 3:1  rand (more active) x3, x4  

S3 19 Observational Prognostic assignment (≈1:3) x3, x4  

Y=continuous

True Treatment Effects? 

• non-linear, non-monotone 

True S={∆(x)>0} has size 0.33, 

True average CATE in S is 0.665.

Overall true effect = 0.0119

S3: mimicking a physician who assigns patients to Active if their SOC prognosis is poor, i.e., true propensities are driven by the prognostic part of the model for Y , and for S4 the predictive part drivs.  
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Estimating CATE correctly is vital!

• Without a good estimate of 
CATE, we can not separate 
between predictive and 
prognostic covariates

• Margin = How large is the 
separation in Shap values 
between the predictive and 
prognostic covariates

• Some models have negative 
margin... 
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Simulations

• Top 1 – how often do we select a 
predictive biomarker

• Top 3 – how often is a predictive 
biomarker in the top 3

• Margin – Ability to distinguish 
predictive and prognostic biomarkers

• Grey line – performance of random 
guess for top 1
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Some concluding thoughts
• Hard to tell which model is the best

• R and DR are strong performers, but can be complex to implement

• S learner was strong on non-RWE data

• But easier to say which to avoid!

• Causal forest is not 'honest'? Surprisingly bad

• T learner performs badly, mostly due to regularization biases as one model is fitted to each arm 

   and prognostic effects gets mismodelled. This has been shown in Hermansson [1] and Lipkovich [4] 
as well. 

• SHAP values is not a panacea ("insights" vs "inference")

• Explains the fitted model regardless of how good it is. [Garbage in, garbage out]

• (and hard to assess a CATE model in the practice; fundamentally unobservable target)

• Does not identify a subgroup

• Other methods does this directly (GUIDE, MOB etc)
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