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Introduction

• The target in many studies is to estimate a causal effect.

• Observational studies are an option when randomized trials are not applicable.

• Two common types of biases in observational studies are:
• confounding bias
• selection bias

• Selection bias can arise from missing data, or when the study population is
constructed.

• Study population is often formed by inclusion or exclusion criteria.
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”Data and study population”

Using this registry, we identified 2 201 352 women who had a first delivery during
1973-2015. To improve internal comparability, only singleton deliveries were included
in the analyses, given the higher prevalence of adverse pregnancy outcomes and
different underlying causes in multiple gestation pregnancies. We excluded 401
(≤ 0.1%) women with a previous diagnosis of ischemic heart disease and 5 685
(0.3%) women with missing information for pregnancy duration or infant birth
weight, leaving 2 195 266 women (99.7% of the original cohort) for inclusion in the
study.

BMJ February 2023
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”Data and study population”
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Our contributions

In this work, we:

• Investigate a bound proposed by Smith and VanderWeele (SV) bound under
multiple selections. Smith and VanderWeele (2019)

• Derive results on variation independence and sharpness of the SV bounds.

• Suggest an assumption-free bound.

• Present an R package for calculating these two bounds for selection bias.
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Model and notation

Variables in the model:

• Binary treatment variable, T .

• Binary potential outcomes, Y (t), t = 0, 1.

• K binary selection variables, S1, ...Sk, ...SK .

• Indicator variable constructed from the selection variables, IS =
∏

Sk.

• Vector of unmeasured variables, U .

• Vector of observed pre-treatment covariates, X.
𝑉

𝑇

𝑈

𝑌

𝐼𝑆

Example structure.

Assumptions:

• Consistency, Y = T · Y (1) + (1− T ) · Y (0).

• Conditional exchangeability, Y (t) ⊥⊥ T |X, t = 0, 1.

• All analysis is done within stratum X = x.

• Ignore sampling variability.
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Numerical example

For the purpose of illustration of the bounds we construct a simulated dataset
zika learner Smith and VanderWeele (2019), de Araújo et al. (2018)

Total
population

Exclude
terminations

Exclude
private hospitals

Subpopulation
with IS = 1

𝑉: Living
area

𝑇: Zika 𝑌:Microcephaly

𝑆1: Birth

𝑆2: Public
hospital

𝑈: SES
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Causal estimands

• Causal relative risk and causal risk difference in total population:

βR =
P (Y (1) = 1)

P (Y (0) = 1)
, βD = P (Y (1) = 1)− P (Y (0) = 1)

.

• Causal relative risk and causal risk difference in the selected population:

βRS =
P (Y (1) = 1|IS = 1)

P (Y (0) = 1)|IS = 1)
, βDS = P (Y (1) = 1|IS = 1)− P (Y (0) = 1|IS = 1)

.

In the zika learner: βR = 90.7, βD = 0.33, βRS = 88.1 and βDS = 0.36
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Observed estimands

Under selection, IS = 1 we define the observed estimands βobs
R and βobs

D defined as

βobs
R =

P (Y = 1|T = 1, IS = 1)

P (Y = 1|T = 0, IS = 1)
,

βobs
D = P (Y = 1|T = 1, IS = 1)− P (Y = 1|T = 0, IS = 1).

Ignoring sampling variability = the observed means are treated as an approximation of the
corresponding asymptotic mean:

1

n

∑
i:T=t,IS=1

Yi
p→ P (Y = 1|T = t, IS = 1).

In the zika learner: βobs
R = 74.5 and βobs

D = 0.28
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Selection bias

The selection bias is defined as a ratio for the relative risks and as a difference for
the risk differences.

Bias(βR) =
βobs
R

βR
=

P (Y=1|T=1,IS=1)
P (Y=1|T=0,IS=1)

P (Y (1)=1)
P (Y (0)=1)

Bias(βD) = βobs
D − βD

= P (Y = 1|T = 1, IS = 1)− P (Y = 1|T = 0, IS = 1)

− [P (Y (1) = 1)− P (Y (0) = 1)]

In the zika learner: Bias(βR) = 74.5/90.7 and Bias(βD) = 0.28− 0.33.
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Selection bias

Similar for the subpopulation:

Bias(βRS
) =

βobs
R

βRS

=

P (Y=1|T=1,IS=1)
P (Y=1|T=0,IS=1)

P (Y (1)=1|IS=1)
P (Y (0)=1|IS=1)

Bias(βDS
) = βobs

D − βDS

= P (Y = 1|T = 1, IS = 1)− P (Y = 1|T = 0, IS = 1)

− [P (Y (1) = 1|IS = 1)− P (Y (0) = 1|IS = 1)]

In the zika learner: Bias(βRS
) = 74.5/88.1 and Bias(βDS

) = 0.28− 0.36.

Causal estimands unknown ⇒ bias unknown ⇒ desirable to bound the bias.
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Bounds

Two main approaches when constructing bounds.

1. Make additional assumptions about the causal structure and strengths of the
dependencies.

2. Base the bounds solely on the observed data.

Two different bounds are discussed in this work, one from each approach.

The bias is bounded from above. If the causal estimand is underestimated, this
technicality is solved by recoding the treatment.
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SV bound

The first bound is proposed by Smith and VanderWeele, the SV bound.

B() ≥ Bias() using values of sensitivity parameters (based on subject
matter/previous knowledge).

For the causal relative risk
B(βR) ≥ βobs

R /βR (1)

and we conclude that the causal relative risk is at least βobs
R /B(βR).

For the causal risk difference the bound B(βD)

B(βD) ≥ βobs
D − βD (2)

and the causal risk difference is at least βobs
D − B(βD).
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Conditional independence assumptions

A requirement for the SV bound is an unmeasured variable, U, such that a
conditional independence assumption is fulfilled:

Assumption 1
(Total population estimands βR and βD) For some unmeasured variable(s) U:
Y ⊥⊥ IS |(T = t, U = u), for t = 0, 1.

Assumption 2
(Subpopulation estimands βRS

and βDS
) For some unmeasured variable(s) U:

Y (t) ⊥⊥ T |(IS = 1, U = u), for t = 0, 1.

𝑉

𝑇

𝑈

𝑌

𝐼𝑆
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Sensitivity parameters

The sensitivity parameters describe the strength between U and Y , T , and IS .

Total population estimands: βR, βD Subpopulation estimands: βRS
, βDS

RRUY |T=1=
maxu P (Y =1|T=1,U=u)
minu P (Y =1|T=1,U=u)

RRUY |S=1=max
t

maxu P (Y =1|T=t,U=u,IS=1)
minu P (Y =1|T=t,U=u,IS=1)

RRUY |T=0=
maxu P (Y =1|T=0,U=u)
minu P (Y =1|T=0,U=u)

RRSU|T=1=max
u

P (U=u|T=1,IS=1)
P (U=u|T=1,IS=0)

RRTU|S=1=max
u

P (U=u|T=1,IS=1)
P (U=u|T=0,IS=1)

RRSU|T=0=max
u

P (U=u|T=0,IS=0)
P (U=u|T=0,IS=1)

The sensitivity parameters are unknown and must be guessed.

Which values should be considered?
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Feasible regions and variation independence

Only values within the feasible regions should be considered for the SV bounds to be
valid. The sensitivity parameters can be restricted by

1. their functional form,

2. each other,

3. the observed data.

Sjölander (2020) investigates similar properties for bounds for confounding bias.
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Feasible regions and variation independence

Theorem 1
{RRUY |T=1, RRUY |T=0, RRSU |T=1, RRSU |T=0} are restricted by their definitions

to values equal to or above 1. Furthermore, for the distribution P (Y, T, U, IS), there

exists a U such that {RRUY |T=1, RRUY |T=0, RRSU |T=1, RRSU |T=0} are not

restricted by each other or by the observed data distribution, P (Y, T, IS).

• The analyst can consider all values of the total population sensitivity parameters
above or equal to 1 as possible.

• Similar theorem for the sensitivity parameters in the subpopulation.
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SV bound

For the total population, the SV bounds are

B(βR) = BF1 ·BF0 (3)

and

B(βD) = BF1−P (Y = 1|T = 1, IS = 1)/BF1+P (Y = 1|T = 0, IS = 1)·BF0, (4)

where BF1 =
RRUY |T=1·RRSU|T=1

RRUY |T=1+RRSU|T=1−1 and BF0 =
RRUY |T=0·RRSU|T=0

RRUY |T=0+RRSU|T=0−1 .

For the subpopulation, the SV bounds are

B(βRS
) = BFU =

RRUY |S=1 ·RRTU |S=1

RRUY |S=1 +RRTU |S=1 − 1
(5)

and

B(βDS
) =max [P (Y = 1|T = 0, IS = 1) · (BFU − 1),

P (Y = 1|T = 1, IS = 1) · (1− 1/BFU )] .
(6)
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Extending SV bounds to multiple selections

When extending the framework to include the selection indicator we have that the
bound can be both larger and smaller than for the single selection case. This is
assessed by studying the partial derivatives with respect to the selection indicator IS
of the SV bounds.

Importantly, it can be difficult for the researcher to provide plausible values for the
sensitivity parameters.

Motivation for a numerical solution: R package SelectionBias.
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SelectionBias

The function SVboundparametersM() calculates the sensitivity parameters and
resulting bounding factors in the SV bound for the M-structure. The code, input,
and output are:

R> SVboundparametersM(whichEst = "RR_sub",

+ Vval = matrix(c(1, 0, 0.85, 0.15), ncol = 2),

+ Uval = matrix(c(1, 0, 0.5, 0.5), ncol = 2),

+ Tcoef = c(-6.2, 1.75),

+ Ycoef = c(-5.2, 5.0, -1.0),

+ Scoef = matrix(c(1.2, 2.2, 0.0, 0.5, 2.0, -2.75, -4.0, 0.0), ncol = 4),

+ Mmodel = "L",

+ pY1_T1_S1 = 0.286,

+ pY1_T0_S1 = 0.004)

"BF_U" 1.5625

"RR_UY|S=1" 2.7089

"RR_TU|S=1" 2.3293

"Reverse treatment" TRUE
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Zika virus example

After recoding of the treatment βobs
R = 0.0134.

Assumed sensitivity parameters from the R function are applied and these values give a
bound

B(βRS ) =
RRUY |IS=1 ·RRTU|IS=1

RRUY |IS=1 +RRTU|IS=1 − 1
=

2.71 · 2.33
2.71 + 2.33− 1

= 1.56,

implying that: 1.56 ≥ 0.0134/βRS .

The causal relative risk in the subpopulation is at least βRS ≥ 0.0134/1.56 = 0.0086 (those

who don’t have zika have a 99.14% decrease of risk of microcephaly compared to those who

have zika).
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Assumption-free bounds

How can one bound the selection bias when no knowledge of U is available or the
conditional independence assumption is not fulfilled?

Considering the true βR we note that the smallest value would be obtained by

βmin
R =

minP (Y (1) = 1)

maxP (Y (0) = 1)
.

Decomposing and bounding P (Y (1) = 1) and P (Y (0) = 1) respectively we obtain

βmin
R =

P (Y (1) = 1)min

P (Y (0) = 1)max

=
P (Y = 1|T = 1, IS = 1)P (T = 1|IS = 1)P (IS = 1)

min[P (T = 1|IS = 1)P (IS = 1) + 2P (IS = 0)+
P (Y = 1|T = 0, IS = 1)P (T = 0|IS = 1)P (IS = 1), 1]

.
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Assumption-free bounds

We derive assumption free bounds (AF) by plugging in βmin
R in the bias equation,

yielding a bound B̃(βR):

B̃(βR) =
βobs
R

βmin
R

≥ βobs
R

βR
(7)

and the true βR is at least
βobs
R

B̃(βR)
.

Similar bounds are calculated for the causal risk difference βD and the subpopulation
estimands, βRS

and βDS
.
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SelectionBias

The function AFbound() takes data as input. Using the zika learner data as
input, the code and output are:

R> AFbound(whichEst = "RR_sub",

+ outcome = mic_ceph,

+ treatment = 1 - zika,

+ selection = sel_ind)

"AF bound" 3.5

From the assumption-free bound we have that the causal relative risk in the
subpopulation is at least βRS

≥ 0.0134/3.5 = 0.0038.
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SV versus AF bound

• The SV bound is often tighter
than the AF bound, especially
when the treatment or outcome is
rare.

• The AF bound gives an upper
limit for the bounds of the
selection bias.

• If B̃(β) < B(β), then the SV
bound produces values that are
outside the possible range of the
bias, i.e., the values are not
feasible and are overly
conservative.

1.5

2.0

2.5

3.0

3.7

2.5

5.0

7.5

10.0

2.5 5.0 7.5 10.0
RRUY|S=1

R
R

T
U

|S
=

1
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Sharpness

When are the bounds feasible?

Definition 2
A bound is sharp if the bias can be equal to the value of the bound, for an observed
distribution and correctly specified sensitivity parameters.

If the bound is not sharp it may be too pessimistic.

Sharp 
region

SV bound

Non-sharp 
region

Inconclusive 
region

SV sharp AF
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Sharpness

Theorem 3
Assume {RRUY |S=1, RRTU |S=1} and P (Y, T, U |IS = 1) such that

BFU ≤ 1/P (Y = 1|T = 0, IS = 1). Then, ∃ a β∗
RS

such that B(β∗
RS

) = bias(β∗
RS

)

and a β∗
DS

such that B(β∗
DS

) = bias(β∗
DS

).

Sharp 
region

SV bound

Non-sharp 
region

Inconclusive 
region

SV sharp AF

The bias can be equal to the value of the bound, in the subpopulation, when the
sharp criterion is met, given that the sensitivity parameters are correct.

This can be assessed with the observed data.
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Example

The simulated data from the R package is used to illustrate the sharpness.

3.667

3.669

Sharp

Inconclusive

Non−sharp

6.750

6.775

6.800

6.825

6.850

6.750 6.775 6.800 6.825 6.850
RRUY|S=1

R
R

T
U

|S
=

1
Sharp limit
AF bound

• Dotted curve: the SV bound is
equal to the AF bound= 3.669.

• Solid curve: sharp limit= 3.667.

• The sharp limit is almost identical
to the AF bound. This is because
P (T = 1|IS = 1) ≈ 1.
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Total population

• There is no corresponding result for sharp bounds for the total population.

• This comes from the construction of the bounds.

• bias(βR) =
βobs
R
βR

≤ P (Y =1|T=1,IS=1)
P (Y =1|T=0,IS=1)

/
mins P (Y =1|T=1,IS=s)
maxs P (Y =1|T=0,IS=s)

= P (Y =1|T=1,IS=1)
mins P (Y =1|T=1,IS=s)

· maxs P (Y =1|T=0,IS=s)
P (Y =1|T=0,IS=1)

≤ BF1 ·BF0.

• If P (Y = 1|T = t, IS = 1) ̸= P (Y = 1|T = t, IS = 0), t = 0, 1, the first
inequality is strict ⇒ the bias cannot be as large as the bound.

• The bias is not greater than the SV bound.

• Corresponding results for the risk difference.
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SelectionBias

Sharpness can be assessed in the R package. The code, input, and output are:

R> SVboundsharp(BF_U = 1.56,

+ pY1_T0_S1 = 0.286,

+ SVbound = 1.56,

+ AFbound = 3.5)

"SV bound is sharp."
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Conclusions

• Study population inclusion/exclusion criteria can result in selection bias.

• Sensitivity analysis can help to assess the magnitude of selection bias.

• SV bounds are extended to multiple selections. Results on variation
independence and conditions for sharp bounds.

• Assumption free bounds and R package SelectionBias.

• Results are applied in the tutorial zika learner and in a study of the effect of
pre-term birth on type 1 diabetes.
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Sjölander, A. (2020). A note on a sensitivity analysis for unmeasured confounding, and the related
E-value. Journal of Causal Inference, 8 (1), 229–248.

Smith, L. H. and T. J. VanderWeele (2019). Bounding bias due to selection. Epidemiology, 30 (4),
509–516.

Zetterstrom, S. and Waernbaum, I. (2022). Selection bias and multiple inclusion criteria in
observational studies. Epidemiologic methods, 11(1).

Zetterstrom, S. and Waernbaum, I. (2023). Selection bias: an R package for bounding selection
bias. (arxiv.org/abs/2302.06518)

33 / 33


	Model and selection bias
	SV bound
	AF bound
	Comparisons
	Conclusions

