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Instrumental variable - Introduction

Instrumental variable

Instrumental variable (IV) regression is a tool that is commonly used
in analysis of observational data. Instrumental variables are used to
make causal inference about the e�ect of a certain exposure in a
presence of unmeasured confounders.

A valid instrumental variable is a variable that is associated with the
exposure, a�ects the outcome only through the exposure (exclusion
criterion), and is unconfounded with the outcome (exogeneity).

The IV assumptions are generally untestable and rely on
subject-matter knowledge.

We propose a new method of sensitivity analysis of the G-estimators
to invalid instrumental variables. The new method is suitable for linear
and non-linear models (speci�cally, logistic model), and requires only
one sensitivity parameter both for the exclusion and the exogeneity
assumptions.
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Instrumental variable - Introduction

Directed acyclic graph (DAG) of a valid instrumental variable

Let Y be the outcome variable, X the exposure, and Z the
instrument. U represents all unmeasured confounders of X and Y ,
whereas L represents all measured confounders.

The instrument Z a�ects Y only through the exposure X , and is
una�ected by the unmeasured variables U.

U

yy %%
Z // X // Y

L

ii OO 44

DAG of a causal model with a valid instrumental variable.
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Instrumental variable - Introduction

Counterfactuals and the twin causal network

A counterfactual implication of the exogeneity and exclusion
assumptions is that a valid IV Z satis�es Y0 ⊥⊥ Z |L.
If Z is a valid IV, there is no open path between Y0 and Z ,
conditionally on L.

U
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Z // X // Y Z0 X = 0 // Y0

L

hh OO 44 77
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ee 11

DAG of a twin network causal model with a valid instrumental variable. The

left-hand side of the DAG represents the actual world, while the right-hand side

represents the hypothetical potential world. X = 0 represents the exposure X that

is set to 0, and Z0 represents the potential value of Z in this hypothetical setting.
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Causal model

Mean causal model

Let Yx be the potential outcome of Y when the exposure X is set
to x . A general causal mean model is

ξ(E [Yx |L,Z ,X = x ])− ξ(E [Y0|L,Z ,X = x ]) = mT (L)xψ,

where ξ is a link-function of a generalized linear model, ψ is the vector
of causal parameters, and dim(m(L)) = dim(ψ).

The composition of m(L) de�nes the exact form of the causal model.

Since E [Yx |L,Z ,X = x ] = E [Y |L,Z ,X = x ] this part is identi�able
from the observed model.

E [Y0|L,Z ,X = x ] is counterfactual, therefore its identi�cation relies
on the availability of a valid IV.
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Causal model

Linear causal model

For example, in a linear model, ξ is the identity link function.
Assuming m(L) = 1, and a binary exposure X , the mean causal model
is

E [Y1|L,Z ,X = 1]− E [Y0|L,Z ,X = 1] = ψ.

Here ψ is the average causal e�ect of the exposure on the exposed.

In linear models, ψ can be estimated using the two-stage least squares
(TSLS) method. However, for non-linear models, the TSLS will
produce inconsistent estimators.
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The G-estimator

The G-estimator - Introduction

The G-estimator is the value of the causal parameter ψ under which
the assumption Y0 ⊥⊥ Z |L holds.

The potential outcome Y0 is counterfactual, whose mean is estimated
by h(ψ).

The exact form of h(ψ) depends on the link-function ξ

h(ψ) =


Y −mT (L)Xψ, if ξ is the identity function,

Yexp{−mT (L)Xψ}, if ξ is the log link function,

expit
(
logit(E [Y |X ,Z , L]−mT (L)Xψ

)
, if ξ is the logit function
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The G-estimator

The G-estimator is obtained as a solution to a system of estimating
equations. In particular, the G-estimator of a causal parameter ψ
solves the following equation

n∑
i=1

D(Li ,Zi )hi (ψ) = 0,

where E [D(L,Z )|L] = 0, and one of the common choices for D is

D(L,Z ) = m(L)(Z − E [Z |L]).

The consistency of the G-estimator relies on the validity of the
instrument Z .

The violation of the conditional independence of Y0 and Z can arise
either from the violation of the exclusion, the exogeneity assumption,
or both. To illustrate this claim, we use the twin causal network.
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Twin causal network with an invalid instrument

The blue arrow from Z to Y represents the exclusion criterion
violation, i.e., a direct e�ect of the instrument on the outcome. The
violet arrow from U to Z represents represents the exogeneity
assumption violation. X = 0 represents the exposure X that is set
to 0, and Z0 represents the potential value of Z in this setting.

Since Z is not in�uenced by X , thus Z0 = Z , therefore the assumption
Y0 ⊥⊥ Z |L is violated by Z0 → Y0,

U
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// X // Y Z0 ;;X = 0 // Y0
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DAG of a twin network causal model with invalid instrumental variable. The

left-hand side of the DAG represents the actual world, while the right-hand side

represents the hypothetical potential world.
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Sensitivity analysis of the G-estimators

Sensitivity parameter α

We model compositions of mean independence violations using a
parametric function b(L,Z ;α), such that

ξ(E [Y0|L,Z ]) = a(L) + b(L,Z ;α).

In the function b(L,Z ;α), the parameter α is a sensitivity parameter
that incorporates the conditional association between Y0 and Z
caused by the violation(s). Particularly, we require b(L,Z ; 0) = 0, and
b(L,Z ;α) ̸= 0 for α ̸= 0.

For any nonzero value of α, the G-estimator is inconsistent.
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Sensitivity analysis of the G-estimators

Consistency of the G-estimators for invalid IVs

To ensure the consistency of the G-estimators, we reformulate h(ψ) as
a function of α

h(ψ;α) =


Y −mT (L)Xψ − b(L,Z ;α),

Yexp{−mT (L)Xψ − b(L,Z ;α)},
expit

(
logit(E [Y |X ,Z , L]−mT (L)Xψ − b(L,Z ;α)

)
.

For the true α, α∗, in h(ψ;α), the G-estimator is consistent.

The true parameter α∗ is non-identi�able and in real-world
applications is rarely known.

A sensitivity analysis is carried out by varying α over a range of
plausible values, and mapping each value to a corresponding
G-estimator.
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Logistic regression example

Causal parameters and violation on the logit scale

Assume a binary outcome Y , a binary exposure X , a binary
instrument Z , and an unmeasured confounder U. In addition, assume
that there are no measured confounders, i.e., L = ∅, and m(L) = 1.
We de�ne the mean causal model on the logit scale

logitP(Y1 = 1|X = 1,Z )− logitP(Y0 = 1|X = 1,Z ) = ψ.

Therefore, we de�ne the violation on the logit scale as well

b(Z , L;α∗) = logitP(Y0 = 1|Z )− logitP(Y0 = 1|Z = 0) = α∗Z ,

where α∗ is the true violation parameter.

V. Vancak & A. Sjölander Sensitivity of G-estimators 18 / 33



Logistic regression example

Logistic regression example

Assuming logistic saturated outcome �model� for E [Y |Z ,X ;βY ] with
an interaction term, such that βTY = (β0, βX , βZ , βXZ ). Therefore,
S(Y ,X ;βY ) are the score functions of this model, particularly

S(Y ,X ;βY ) =


(Y − E [Y |Z ,X ;βY ])
(Y − E [Y |Z ,X ;βY ])X
(Y − E [Y |Z ,X ;βY ])Z
(Y − E [Y |Z ,X ;βY ])XZ

 .

Let D(L,Z ;µZ ) = Z − µZ . Therefore, the G-estimator is the value
of ψ that solves

n∑
i=1

(Zi − µZ )expit
(
logitP̂(Yi = 1|Zi ,Xi ; β̂Y )− Xiψ − αZi

)
= 0.
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Logistic regression example

The system of estimating equations

Let
∑n

i=1Q(Yi ,Xi , Li ,Zi ; θ, α) = 0 be the estimating equations of the
logistic causal model, where the vector of estimands is
θT = (βY , µZ , ψ), and

Q(Y ,X , L,Z ; θ, α) =

 S(Y ,X , L;βY )
S(L,Z ;µZ )

D(L,Z ;µZ )h(ψ;α)

 .

Notably, the score function of the instrument model S(L,Z ;µZ )
equals D(L,Z ;µz).

This is a system of unbiased estimating equations, i.e.,
E [Q(Y ,X , L,Z ; θ, α)] = 0, therefore the estimators that solve this
system are consistent estimators of the true θ0.
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Logistic regression example

Asymptotic variance and distribution of the G-estimator

The asymptotic variance of θ̂ is given by the sandwich formula

V (θ0, α) = n−1
A(θ0, α)

−1
B(θ0, α)A(θ0, α)

−T

where A(θ0, α) = E [−∂Q(θ0, α)/∂θ
T ],

B(θ0, α) = E [Q(θ0, α)Q(θ0, α)
T ], and θ0 is the true value of the

unknown parameters.

The asymptotic distribution of the estimators θ̂(α) is multivariate
normal, namely

√
n(θ̂(α)− θ0(α))

D−→ Np(0,V (θ0, α)).

The asymptotic variance and the asymptotic distribution are general
results, and do not apply only to the logistic model.
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Logistic regression example - simulation

Logistic regression simulation - data generating process (DGP)

The DGP is

Z ∼ Ber(pz)

X |Z = z ∼ Ber (expit(γ0 + γzz))

Y |X = x ,Z = z ∼ Ber (expit(β0 + βxx + βzz + βxzxz)) .

We specify the marginal distribution of Y , X , and Z . In order to
relate the violation structure to the DGP parameters of the observed
data we use the fact that a valid IV satis�es Y0 ⊥⊥ Z |L, particularly,
P(Y0|Z = 1) = P(Y0|Z = 0) assuming that L = ∅. Therefore, for an
invalid IV, the violation structure is

logitP(Y0|Z = 1)− logitP(Y0|Z = 0) = α∗.
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Logistic regression example - simulation

Logistic regression simulation - data generating process (DGP)

By using the causal parameter ψ and the DGP we obtain a function
w.r.t. the unknown parameters of the observed data

P(Y0 = 1|Z )
= expit(β0 + βz)(1− expit(γ0 + γz))

+ expit(β0 + βx + βz + βxz − ψ)expit(γ0 + γz) .

By plugging in this result in the equation that de�nes the violation
structure, we obtain the functional relationship between the true
sensitivity parameter α∗ and the DGP parameters of the observed
data.

The parameters of the DGP are determined after the speci�cation of
the true ψ and α∗

V. Vancak & A. Sjölander Sensitivity of G-estimators 23 / 33



Logistic regression example - simulation results

Coverage rates of the 95% CIs of the true

causal parameter ψ ∈ {0, 1.5} in the logistic

causal model as a function of the sensitivity

parameter α, for α∗ ∈ {0, 0.5}, for sample

size n = 1000, and m = 100 repetitions.

Additionally, P(Y = 1) = py = 0.3.

Boxplots of empirical distribution of ψ̂G (α)
for the true causal parameter ψ ∈ {0, 1.5}
as a function of the sensitivity parameter α,
for α∗ ∈ {0, 0.5}, for sample size n = 1000,

and m = 100 repetitions. Additionally,

P(Y = 1) = py = 0.3.
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Logistic regression example - simulation results

Coverage rates of the 95% CIs of the true

causal parameter ψ ∈ {0, 1.5} in the logistic

causal model as a function of the sensitivity

parameter α, for α∗ ∈ {0, 0.5}, for sample

size n = 1000, and m = 100 repetitions.

Additionally, P(Y = 1) = py = 0.8.

Boxplots of empirical distribution of ψ̂G (α)
for the true causal parameter ψ ∈ {0, 1.5}
as a function of the sensitivity parameter α,
for α∗ ∈ {0, 0.5}, for sample size n = 1000,

and m = 100 repetitions. Additionally,

P(Y = 1) = py = 0.8.
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Logistic regression example - simulation summary

Simulation summary

For the true value of α in h(ψ;α), the G-estimators are consistent and
their asymptotic con�dence intervals meet the nominal coverage
probabilities.

The proposed method works well both for valid and invalid IVs, and
for linear and logistic models.

The proposed method works well also when the true causal e�ect ψ is
zero, both for linear and logistic models.

In the logistic causal model with logistic outcome model, the variance
of the G-estimator depends on the dimension and the stability of the
parameters estimators of the outcome model. Namely, compared to
the linear causal models, the CIs are wider, and therefore, the coverage
probability of the CI depends less on the assumed value of α.
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Real world example - e�ects of vitamin D on mortality

Vitamin D de�ciency has been linked with several lethal conditions
such as cancer and cardiovascular diseases.

Vitamin D status is also associated with unmeasured behavioral and
environmental factors that may result in biased estimators when using
standard statistical analyses to estimate causal e�ects.

Mutations in the �laggrin gene have been shown to be associated with
a higher vitamin D status and are assumed to satisfy the IV
assumptions.

We use a publicly available mutilated version of the data on a cohort
study on vitamin D status causal e�ect on mortality rates.

The data frame contains 2571 subjects and 5 variables: age (at
baseline), �laggrin (a binary indicator of whether �laggrin mutations
are present), vitd (vitamin D level at baseline, measured as serum
25-OH-D(nmol/L)), time (follow-up time), and death (an indicator of
whether the subject died during follow-up).
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Real world example - e�ects of vitamin D on mortality

Vitamin D data

The death during follow-up is the point outcome Y .

The presence of the �laggrin gene mutations is the IV Z .

Following Martinussen et al. (2019) the scaled version of the
vitamin D status at baseline is a continuous exposure variable X .

Unmeasured factors

qq ss ++
Filaggrin 44

// Vitamin D // Death

DAG of the vitamin D status model. The violet arrow represents a possible

exogeneity assumption violation, and the blue line represents a possible exclusion

assumption violation.
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Real world example - e�ects of vitamin D status on mortality

G-estimator ψ̂G (α) of the vit. D status causal e�ect on death rate during

follow-up as a function of the sensitivity parameter α. For α = 0 the

ψ̂G (0) = −1.558. For α < −0.17 there is no solution to the estimating equations.
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Conclusions

Vitamin D data

If the mean models are correctly speci�ed, there is no evidence of a
positive causal e�ect of vitamin D de�ciency on the mortality rate.

If the IV is invalid, then the true causal e�ect is likely to be of larger
magnitude than the estimated value for α = 0.

Study

This study provides theoretical framework and practical guidelines on
how to conduct sensitivity analysis of G-estimators using single
sensitivity parameter that captures violations of both the exogeneity
and the exclusion assumptions.

The proposed method is applicable both to linear and non-linear
causal models.
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Thank you!
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