

EVALUATING THE PROBABILITY OF SUCCESS OF A TRIAL OR PROGRAM BASED ON MULTIPLE ENDPOINTS

Corine Baayen - 22 Nov 2022 - Join DSBS/FMS meeting

Why evaluate the probability of success (PoS)?

- Support portfolio management
 E.g. prioritise between projects depending on risk, costs and reward
- Choose between several options for a development program E.g. choose between sample sizes, types of study designs

Aim is to support internal decision-making

Lundbeck X

Assurance – simple case with success based on pvalue

- ***** The power $1 \beta(\delta)$ is calculated conditional on δ being a specific value
- ★ Assurance is the unconditional power: $\int_{\delta} (1 \beta(\delta))p(\delta)d\delta$ where $p(\delta)$ is the prior distribution

Assurance has an upper bound that can be below 1

- ✓ Unlike power, assurance will typically reach an upper bound below 1 as sample size increases
- The upper bound is the prior probability of meeting the success criteria before data in the proposed study have been collected.
- This probability should not be "too high", otherwise it is hard to argue that randomization is ethical

FICTIONAL CASE STUDY

A drug to treat OFF time and Dyskinesia in Parkinson's Disease

Parkinson's Disease

- ★ Neurodegenerative disease
- Parkinson's disease is strongly associated with the loss of certain nerve cells in the brain that produce dopamine
- Average age of onset is 60 years old. However, it can occur in younger adults between 30 and 40 years old

Stages of Parkinson's Disease

Stage 1: Develop mild symptoms but

able to go about day-to-day life

Stage 2: Symptoms such as tremors and stiffness begin to worsen, may develop poor posture or have trouble walking Stage 3: Movement begins to slow down, loss of balance

Verywell / Zoe Hansen

Finding a balance between OFF time and Dyskinesia

- ★ Two major symptoms of PD patients are OFF time and Dyskinesia
- Standard of care Levodopa treatment can reduce OFF time, but increase Dyskinesia

Case study

- A fictional drug (Drug L) that treats PD
- Aim to have an indication for the treatment of both
 - OFF time (measured in hours/day based on patient diary)
 - Dyskinesia (measured by Unified Dyskinesia Rating Scale (UDysRS), max score 104)
- It is a "me too" drug: it has a similar mode of action to an approved competitor drug (Drug C), but is expected to have certain advantages, e.g. higher efficacy due to better absorption and a better safety profile
- We will calculate the PoS for a single Phase II trial that aims to establish proof of concept

SUCCESS CRITERIA

Which possible scenarios would constitute a success?

Success grid

Effect needed on OFF time:

- Drug C (and several other PD drugs) can reduce OFF time by 1 hour/day
- Minimum clinically relevant change on OFF time is 1 hour/day

Effect needed on Dyskinesia (UDysRS)

- Drug C reduces Dyskinesia by 15 points on UDysRS (no other drugs available)
- Minimum clinically relevant change on UDysRS is 10 points

SUMMARIZING CURRENT EVIDENCE

What effect do we expect?

Prior for OFF time

- Based on a meta-analysis of existing trials of Drug C the estimate of the effect on OFF time equals -1 (SE=0.5)
- Based on internal knowledge of Drug L, it is expected that the absorption of the drug will be slightly better than Drug C, resulting in a higher effect

Prior for Dyskinesia (UDysRS)

- Based on a meta-analysis of existing trials of Drug C the estimate of the effect on the UDysRS equals -15 (SE=4)
- Based on internal knowledge of Drug L, it is believed that the effect on dyskinesia will be similar to Drug C

Joint prior and prior PoS

- Based on internal data, the correlation between the changes from baseline in OFF time and UDysRS was estimated to be 0.4
- Higher beliefs indicate that the values are more likely
- The colouring is according to the grid of the success criteria, indicating the success outcome under each of the possible scenarios

Priors for SDs for study endpoints

The SD for the changes from baseline in OFF time and the UDysRS to Week 12 varies from study to study, therefore, a prior was also used for these parameters

EVALUATING THE POS FOR THE TRIAL

Study Design

- For this example, a simple T-test is used to compare results on OFF time and UDysRS between arms at week 12.
- ★ The study is powered at 80% for the primary endpoint (OFF time), with a twosided significance level of 5%, a target effect size of -1.5 and an SD of 3
- ★ UDysRS is a more sensitive endpoint than OFF time, so power is OK

One possible outcome of a single trial

- The black dot indicates the estimated effect on each outcome
- The black ellipse indicates the 95% confidence area

When would we consider a single trial a success?

1. If the point estimate is in the green area and the p-values are significant for both outcomes?

<u>Interpretation of 1:</u> the effect is different from 0 and the best guess for the treatment effect would result in a success

2. If we are > XX% (e.g. 60%) confident that the effect is in the green area?

3. If we are > XX% (e.g. 60%) confident that the effect is in the green or yellow area? <u>Interpretation of 2 and 3:</u> the confidence that the true effect would result in a success (or success or conditional success for option 3) is at least XX%

We are more used to think in terms of Option 1, but at the end of Phase II, Option 2 or 3 might be what we are more interested in, since it takes the uncertainty around the estimate into account

Idea behind simulating the PoS of the study

- Draw a scenario (effect and SD for OFF time and UDysRS) from the prior distributions more likely scenarios will be drawn more often
- ★ Simulate the trial data based on the drawn scenario
- ★ Assess whether the simulated trial would be a success
- ★ Do this many times (e.g. 100000) and assess the proportion of successful trials

In the end we will have an evaluation of how often we would see a success given our uncertainty on the effects on OFF time and UDysRS

<u>Note</u>: without priors on the SDs analytical computation of the PoS is quite straightforward

Results on PoS

Probabilities of success according to different criteria for a successful trial:

Success criteria for the trial	PoS (10000 sims)	PoS (analytical, fixed σ)	Proportion of true success
Significant results on both endpoints	72%	73%	20%
Significant results on both endpoints Estimates in Success scenario	29%	30%	15%
Significant results on both endpoints Estimates in Success or Conditional Success scenario	57%	58%	53%
Confidence that effect is in Success scenario is 60%	23%		13%
Confidence that effect is in Success or Conditional Success scenario is 60%	50%		44%

Prior probabilities for each
outcome22%40%38%

PoS for case study with increasing sample size

Lundbeck X

The probability of obtaining an effect estimate ≥ X is larger for smaller sample sizes

Treatment Difference in the Change in HbA1c

Qu, Y., Du, Y., Zhang, Y., & Shen, L. (2020). Understanding and adjusting for the selection bias from a proof-ofconcept study to a more confirmatory study. *Statistics in Medicine*, 1–12.

Discussion on use of assurance

- One can easily extend the approach to assess the PoS of an entire program (e.g. the PoC study and 2 Phase III studies)
 - Can also calculate the PoS of the full development program, conditional on a successful PoC study (how much are we de-risking the program with this PoC study?)
 - ★ Will need to down weight the results from small early phase studies*
- ★ Priors on the SD don't seem to impact the results much**
- Discrepancy between p-value based on null hypothesis of no effect and success criteria based on minimum clinically relevant effect

*Qu, Y. et al. (2020). Understanding and adjusting for the selection bias from a proof-of-concept study to a more confirmatory study. Statistics in Medicine, 1–12.

**Walley et al. (2015). Advantages of a wholly Bayesian approach to assessing efficacy in early drug development: A case study. *Pharmaceutical Statistics*, *14*(3), 205–215.

Benefits of using this approach

- Transparent evaluation of the risk of a program or study (considering both sampling variability and uncertainty about the drug effect)
- Foster and drive cross-functional exchanges/discussions (R&D and commercial functions)
- Triggers good discussions about expectations and facilitates alignment of expectations
- Enhance discussions through an analytical approach / data- or fact-based discussions

Assurance adding requirement that the observed effect is ≥ a minimum relevant effect

1,2

- ***** Standard deviation of outcome σ =3
- **★** Mean of prior for effect δ =1.5
- ★ Standard deviation for prior v=0.85
- ★ Minimum relevant effect = 2

Probability of Success using different criteria

- * The PoS seems to have limited use as a tool to select between study designs*
- ★ "We expect most PoC studies to be negative in early development. Consequentially, as the study design improves, the PoS typically will tend towards a low value and not simply increase" <u>use</u> <u>Posterior Conditional Success and Failure Distributions?</u>

*Walley et al. (2015). Advantages of a wholly Bayesian approach to assessing efficacy in early drug development: A case study. *Pharmaceutical Statistics*, *14*(3), 205–215.

Results on PoS

Probabilities of success according to different criteria for a successful trial:

Success criteria for the trial	PoS (10000 sims)	PoS (analytical, fixed σ)	Proportion of true success
Significant results on both endpoints	72%	73%	20%
Significant results on both endpoints Estimates in Success scenario	29%	30%	15%
Significant results on both endpoints Estimates in Success or Conditional Success scenario	57%	58%	53%

Prior PoS

Prior probabilities for each
outcome22%40%38%

