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Overview

Measures used in cancer control; why study patient survival.

Intro to relative survival (excess mortality) and why it is the
measure of choice for population-based cancer survival analysis.

Flexible parametric models.

The concept of statistical cure; cure models.

Estimating crude and net probabilities of death.

Partitioning excess mortality;
estimating treatment related CVD mortality.

Cool stuff that I definitely won’t have time to talk about.

Estimating the number of avoidable premature deaths.
Loss in expectation of life.
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Lung cancer incidence, mortality and survival (age-standardised) 
England, 1982-2008, by sex
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All-cause mortality for males with colon cancer and

Finnish population
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Relative survival

We estimate excess mortality: the difference between observed
(all-cause) and expected mortality.

excess = observed − expected
mortality mortality mortality

Relative survival is the survival analog of excess mortality — the
relative survival ratio is defined as the observed survival in the
patient group divided by the expected survival of a comparable
group from the general population.

relative survival ratio =
observed survival proportion

expected survival proportion
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Cervical cancer in New Zealand 1994 – 2001

Life table estimates of patient survival

Women diagnosed 1994 - 2001 with follow-up to the end of 2002

Interval- Interval-

Effective specific specific Cumulative Cumulative Cumulative

number observed relative observed expected relative

I N D W at risk survival survival survival survival survival

1 1559 209 0 1559.0 0.86594 0.87472 0.86594 0.98996 0.87472

2 1350 125 177 1261.5 0.90091 0.90829 0.78014 0.98192 0.79450

3 1048 58 172 962.0 0.93971 0.94772 0.73310 0.97362 0.75296

4 818 32 155 740.5 0.95679 0.96459 0.70142 0.96574 0.72630

5 631 23 148 557.0 0.95871 0.96679 0.67246 0.95766 0.70218

6 460 10 130 395.0 0.97468 0.98284 0.65543 0.94972 0.69013

7 320 5 129 255.5 0.98043 0.98848 0.64261 0.94198 0.68219

8 186 3 134 119.0 0.97479 0.98405 0.62641 0.93312 0.67130

9 49 1 48 25.0 0.96000 0.97508 0.60135 0.91869 0.65457
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Relative survival example (skin melanoma)

Table 1: Number of cases (N) and 5-year observed (p), expected (p∗),
and relative (r) survival for males diagnosed with localised skin melanoma
in Finland during 1985–1994.

Age N p p∗ r
15–29 67 0.947 0.993 0.954
30–44 273 0.856 0.982 0.872
45–59 503 0.824 0.943 0.874
60–74 449 0.679 0.815 0.833
75+ 200 0.396 0.505 0.784

Relative survival controls for the fact that expected mortality
depends on demographic characteristics (age, sex, etc.).

In addition, relative survival may, and usually does, depend on
such factors.
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Modelling excess mortality

Relative Survival Models

h(t) = h∗(t) + λ(t)

Observed
Mortality Rate

=
Expected

Mortality Rate
+

Excess
Mortality Rate

Cox model cannot be applied to model a difference in two rates.

It is the observed mortality that drives the variance.

Can use Poisson regression (Dickman et al. 2004) [1].

Even better: flexible parametric models (Royston and Parmar
2002 [2], Nelson et al. [3]).
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Flexible Parametric Survival Models

First introduced by Royston and Parmar (2002) [2].

Parametric estimate of the baseline hazard without the usual
restrictions on the shape (i.e, flexible).

Applicable for ‘standard’ and relative survival models.

Can fit relative survival cure models (Andersson 2011) [4].

Once we have a parametric expression for the baseline hazard we
derive other quantities of interest (e.g., survival, hazard ratio,
hazard differences, expectation of life).
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Quote from Sir David Cox (Reid 1994 [5])

Reid “What do you think of the cottage industry that’s grown up
around [the Cox model]?”

Cox “In the light of further results one knows since, I think I
would normally want to tackle the problem parametrically.
. . . I’m not keen on non-parametric formulations normally.”

Reid “So if you had a set of censored survival data today, you
might rather fit a parametric model, even though there was
a feeling among the medical statisticians that that wasn’t
quite right.”

Cox “That’s right, but since then various people have shown that
the answers are very insensitive to the parametric
formulation of the underlying distribution. And if you want
to do things like predict the outcome for a particular patient,
it’s much more convenient to do that parametrically.”
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Example: survival of patients diagnosed with colon

carcinoma in Finland

Patients diagnosed with colon carcinoma in Finland 1984–95.
Potential follow-up to end of 1995; censored after 10 years.

Outcome is death due to colon carcinoma.

Interest is in the effect of clinical stage at diagnosis (distant
metastases vs no distant metastases).

How might we specify a statistical model for these data?
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Fit a Cox model to estimate the mortality rate ratio

. stcox distant

No. of subjects = 13208 Number of obs = 13208

No. of failures = 7122

Time at risk = 44013.26215

LR chi2(1) = 5544.65

Log likelihood = -61651.446 Prob > chi2 = 0.0000

--------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% C.I.]

--------+-----------------------------------------------------

distant | 6.64 .1689 73.00 0.000 6.24 6.90

--------------------------------------------------------------
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Hazard ratio: 6.64

stcox distant, efron
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Hazard ratio: 10.04

Hazard Ratios
Cox: 6.64

Exponential: 10.04
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Hazard ratio: 7.41

Hazard Ratios
Cox: 6.64

Exponential: 10.04
Weibull: 7.41
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Hazard ratio: 6.89

Hazard Ratios
Cox: 6.64

Exponential: 10.04
Weibull: 7.41

Poisson (annual): 6.89
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Hazard ratio: 6.65

Hazard Ratios
Cox: 6.64

Exponential: 10.04
Weibull: 7.41
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Hazard ratio: 6.64

Hazard Ratios
Cox: 6.64

Exponential: 10.04
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Hazard ratio: 6.64
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Hazard ratio: 6.63

Hazard Ratios
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Flexible Parametric Models: Basic Idea

Consider a Weibull survival curve.

S(t) = exp (−λtγ)

If we transform to the log cumulative hazard scale.

ln [H(t)] = ln[− ln(S(t))]

ln [H(t)] = ln(λ) + γ ln(t)

This is a linear function of ln(t)
Introducing covariates gives

ln [H(t|xi)] = ln(λ) + γ ln(t) + xiβ

Rather than assuming linearity with ln(t) flexible parametric
models use restricted cubic splines for ln(t).
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Flexible Parametric Models: Incorporating Splines

We thus model on the log cumulative hazard scale.

ln[H(t|xi)] = ln [H0(t)] + xiβ

This is a proportional hazards model.
Restricted cubic splines with knots, k0, are used to model the
log baseline cumulative hazard.

ln[H(t|xi)] = ηi = s (ln(t)|γ, k0) + xiβ

For example, with 4 knots we can write

ln [H(t|xi)] = ηi = γ0 + γ1z1i + γ2z2i + γ3z3i︸ ︷︷ ︸
log baseline

cumulative hazard

+ xiβ︸︷︷︸
log hazard

ratios

We are fitting a linear predictor on the log cumulative hazard
scale.
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Survival and Hazard Functions

We can transform to the survival scale

S(t|xi) = exp(− exp(ηi))

The hazard function is a bit more complex.

h(t|xi) =
ds (ln(t)|γ, k0)

dt
exp(ηi)

This involves the derivatives of the restricted cubic splines
functions, although these are relatively easy to calculate.
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Net Survival

Relative Survival aims to estimate of net survival.

This is the probability of not dying of cancer in the hypothetical
world where it is impossible to die of other causes.

Key Assumptions
Independence between mortality due to cancer and mortality due to
other causes & an appropriate estimate of expected survival.

Same interpretation/assumption for cause-specific survival.

We also assume that we have modelled covariates appropriately .
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Crude and Net Probabilities

Net Probability
of Death

Due to Cancer
=

Probability of death due to cancer
in a hypothetical world, where the

cancer under study is the only
possible cause of death

Crude Probability
of Death

Due to Cancer
=

Probability of death due to cancer
in the real world, where you may die

of other causes before the
cancer kills you

Net probability also known as the marginal probability.

Crude probability also known as the cumulative incidence
function.
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Brief Mathematical Details [6]

h(t) = h∗(t) + λ(t) - all-cause mortality rate
h∗(t) - expected mortality rate
λ(t) - excess mortality rate
S∗(t) - Expected Survival
R(t) - Relative Survival

Net Prob of Death = 1− R(t) = 1− exp

(
−
∫ t

0
λ(t)

)

Crude Prob of Death (cancer) =

∫ t

0
S∗(t)R(t)λ(t)

Crude Prob of Death (other causes) =

∫ t

0
S∗(t)R(t)h∗(t)
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Probabilities of death due to prostate cancer
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What is cure?

Medical cure occurs when all signs of cancer have been removed
in a patient; this is an individual-level definition of cure.

It is difficult to prove that a patient is medically cured.

Population or statistical cure occurs when mortality among
patients with the disease returns to the same level as that
expected for the general population.

Equivalently the excess mortality rate approaches zero.

This is a population-level definition of cure.

When the excess mortality reaches (and stays) at zero, the
relative survival curve is seen to reach a plateau.
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Plateau for relative survival
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Mixture cure model

Mixture cure model

S(t) = S∗(t)(π + (1− π)Su(t)); λ(t) = h∗(t) + (1−π)fu(t)
π+(1−π)Su(t)

S∗(t) is the expected survival.

π is the proportion cured (the cure fraction).

(1− π) is the proportion ‘uncured’ (those ‘bound to die’).

Su(t) is the net survival for the ‘uncured’ group.

The excess mortality rate has an asymptote at zero.

See De Angelis et al. [7], Verdecchia et al. [8] and Lambert et
al.[9] for more details.
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Cure models: Interpreting changes over time
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Time trends for cancer of the colon age <50
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Andersson 2010 [10]: trends for AML
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Partitioning Excess Mortality (Eloranta [11])

We have extended flexible parametric models for relative survival
to simultaneously estimate the excess mortality due to diseases
of the circulatory system (DCS) and the remaining excess
mortality among patients diagnosed with Hodgkin lymphoma.

Results are presented both as excess mortality rates and crude
probabilities of death.

The outcomes (DCS and non-DCS mortality) can be regarded as
competing events and the total excess mortality is partitioned
using ideas from classical competing risks theory.

The model requires population mortality files stratified on cause
of death (i.e., DCS and other deaths) to identify those deaths in
excess of expected.
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Excess mortality for males with Hodgkin lymphoma
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Temporal trends in 20-year probability of death
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References

[1] Dickman PW, Sloggett A, Hills M, Hakulinen T. Regression models for relative survival.
Statistics in Medicine 2004;23:51–64.

[2] Royston P, Parmar MKB. Flexible parametric proportional-hazards and proportional-odds
models for censored survival data, with application to prognostic modelling and estimation
of treatment effects. Statistics in Medicine 2002;21:2175–2197.

[3] Nelson CP, Lambert PC, Squire IB, Jones DR. Flexible parametric models for relative
survival, with application in coronary heart disease. Statistics in Medicine 2007;
26:5486–5498.

[4] Andersson TML, Dickman PW, Eloranta S, Lambert PC. Estimating and modelling cure
in population-based cancer studies within the framework of flexible parametric survival
models. BMC Med Res Methodol 2011;11:96.

[5] Reid N. A conversation with Sir David Cox. Statistical Science 1994;9:439–455.

[6] Lambert PC, Dickman PW, Nelson CP, Royston P. Estimating the crude probability of
death due to cancer and other causes using relative survival models. Statistics in Medicine
2010;29:885 – 895.

[7] Angelis RD, Capocaccia R, Hakulinen T, Soderman B, Verdecchia A. Mixture models for
cancer survival analysis: application to population-based data with covariates. Statistics in
Medicine 1999;18:441–454.

Paul Dickman Population-Based Cancer Survival FMS, Utö, 24 October 2012 43
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