

Violent Crime

Bayesian Logistic Regression anything else than Lasso Regression?

Bodil Svennblad, PhD, UCR 2013-05-06

Rolf Gedeborg, MDr Ingemar Thiblin, MDr

Violent Crime

- Violence increases?
- Prediction model for mortality of victims
 - As tool for legal process in court
 - In clinical practice

Violent Crime, data

- Injury hospitalizations from 1998 to 2004 with main ICD10 code S00-T80 (Injury, poisoning and certain other consequences of external causes) excluding adverse effects and poisoning
- Excluding readmissions
- ICD-10 cause of injury categorized using injury matrix (CDC)

Individual data

- Gender
- Age
- ICD10
- Date of admission
- DeathDate

ICD10

- ICISS
- Cause
- Injury type
- Injury severity

International Classification of Diseases Injury Severity Score

 $DSP_i = \frac{\# survival individuals with code_i}{\# individuals with code_i}$

 $ICISS_j = product of DSP_i$ for each code i present for indivdual j

Cause

Cut/pierce Fire/flame Firearm Struck by/against Suffocation other Injury type Head Thoracic Abdominal Head/thorax Head/abdomen

Model

Logistic regression

$$y_i \sim Be(p_i)$$
$$\log\left(\frac{p_i}{1-p_i}\right) = \mathbf{x}\beta$$

Estimate β by Maximum Likelihood

Logistic regression

For prediction purposes, use some kind of shrinkage

- (Multiply each β with a factor c < 1)
- Estimate β_i with ML but with constraints

LASSO – Least Absolute Shrinkage and Selection Operator

Tibshirani 1996

 $\beta = \arg \max \left\{ l(\beta | data) - \lambda \sum |\beta_j| \right\}$

Bayes – in general

apriori: $\pi(\beta)$ likelihood: $L(\beta|data)$ aposteriori: $f(\beta|data) \propto \pi(\beta)L(\beta|data)$ $\log f \propto \log \pi(\beta) + l(\beta|data)$

Lasso as Bayes estimate

$$\beta = \arg \max \left\{ l(\beta | data) - \lambda \sum |\beta_j| \right\}$$

?

 $\log f \propto \log \pi(\beta) + l(\beta | data)$

Lasso as Bayes estimate

Lasso estimate equals Maximum Posterior Mode from Bayesian logistic regression if Laplace distribution used as prior

BBRtrain & BBRclassify

Genkin, Lewis , Madigan (Large-Scale Bayesian Logistic Regression for Text Categorization, 2007)

• Fast algorithm for finding posterior mode

Models

Model	Variables	No of variables original	No of variables final
1	Gender, age	2	2
2	model 1 + iciss	3	3
3	model 1 + ICD	599	105 (128)
4	model 3 + 2way ICD interactions	5773	(177)
5	model 3 + iciss	600	(59)
6	model 2 + head + thorax + abdomen + head&thorax + head&abdomen	8	(8)
7	model 6 + cause	14	(14)
8	model 2 + cause	9	(9)

Validation measures

Using point estimates (MAP)

- AUC
- HL
- Brier Score
- Scaled Brier Score
- Intercept
- Slope

What did we aim for?

A prediction model with age, gender, iciss and perhaps other predictors that

- Is easy to use (parsimonious)
- Gives estimate of probability of death (not of β)
- Precision of the estimates

model 7: age, gender, iciss, cause, injury type (14 predictors)

True Bayesian, model 7

UPPSALA

RESEARCH CENTER

Bayesian logistic regression

- Necessary asumptions formalized in priors
- Possibility to incorporate prior knowledge
- Easy to implement using MCMC
- Estimates of parameters of interest
- Precision of estimates through credibility intervals which are easy to interpret

