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Violent Crime 



Violent Crime 

• Violence  increases? 
 
• Prediction model for mortality of 

victims 
• As tool for legal process in court 
• In clinical practice 

 



Violent Crime, data 

 
• Injury hospitalizations from 

1998 to 2004 with main 
ICD10 code S00-T80 (Injury, 
poisoning and certain other 
consequences of external 
causes) excluding adverse 
effects and poisoning 

• Excluding readmissions 
• ICD-10 cause of injury 

categorized using injury 
matrix (CDC) 

Swedish 
National Patient 

Registry  

Swedish Cause 
of Death 
Registry  

~ 15.000 victims 
of homicide/ 

assault 



Individual data 

• Gender 
• Age 
• ICD10 
• Date of admission 
• DeathDate 

 

ICD10 
• ICISS  
• Cause 
• Injury type 
• Injury severity 



International Classification of 
Diseases Injury Severity Score  

0/1 0/1 0/1 
Code 1 

0/1 
Code 2 Code 3 Code x … 

DSP1 DSP2 DSP3 
DSPx 

𝐷𝑆𝑆𝑖 =
# 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑖𝑖𝑠𝑠𝑠𝑖𝑠𝑠𝑠𝑠 𝑤𝑠𝑤𝑤 𝑐𝑐𝑖𝑐𝑖   

# 𝑠𝑖𝑖𝑠𝑠𝑠𝑖𝑠𝑠𝑠𝑠 𝑤𝑠𝑤𝑤 𝑐𝑐𝑖𝑐𝑖
 

ICISSj = product of DSPi for each code i present for 
indivdual j 

1998-2002 injury hospitalizations 
and prehospital injury deaths in 
Sweden 



ICD 10 

0/1 0/1 0/1 
Code 1 

0/1 
Code 2 Code 3 Code x … 

Cause 
Cut/pierce 
Fire/flame 
Firearm 
Struck by/against 
Suffocation 
other 

Injury type 
Head 
Thoracic 
Abdominal 
Head/thorax 
Head/abdomen 



Model 

Age 
Gender 
ICD codes 
ICISS 
Injury type 
Cause 

Prehospital death 
Hospital death       ? 



Logistic regression 
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Estimate β by Maximum Likelihood 



Logistic regression 
 
For prediction purposes, use some kind of 
shrinkage 

• (Multiply each β with a factor c < 1) 
 
 

• Estimate βi with ML but with constraints 
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LASSO – Least Absolute 
Shrinkage and Selection Operator 

Tibshirani 1996 

( ){ }∑−= jdatal βλββ maxarg



Bayes – in general 
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Lasso as Bayes estimate 

( ) ( )datalf ββπ +∝ loglog

? 

( ){ }∑−= jdatal βλββ maxarg



Lasso as Bayes estimate 

( ){ }∑−= jdatal βλββ maxarg

( ) ( )datalf ββπ +∝ loglog

( ) ( )βλλβπ −= exp
2

Lasso estimate equals Maximum Posterior Mode from 
Bayesian logistic regression if Laplace distribution 
used as prior  





BBRtrain & BBRclassify 

Genkin, Lewis , Madigan (Large-Scale Bayesian Logistic 
Regression for Text Categorization, 2007) 

• Fast algorithm for finding posterior mode 

1998-2002 
training  
data set 

2003-2004 
validation set 



Models 
Model Variables No of 

variables 
original 

No of 
variables 
final 

1 Gender, age 2 2 
2 model 1 + iciss 3 3 
3 model 1 + ICD 599 105 (128) 
4 model 3 + 2way ICD interactions 5773 (177) 
5 model 3 + iciss 600 (59) 
6 model 2 + head + thorax + 

abdomen + head&thorax + 
head&abdomen 

8 (8) 

7 model 6 + cause 14 (14) 
8 model 2 + cause 9 (9) 



Validation measures 

Using point estimates (MAP) 
 
• AUC 
• HL 
• Brier Score 
• Scaled Brier Score 
• Intercept 
• Slope 



What did we aim for? 

A prediction model with age, gender, iciss and perhaps other 
predictors that 
 
• Is easy to use (parsimonious) 
• Gives estimate of probability of death (not of β) 
• Precision of the estimates 

model 7: age, gender, iciss, cause, 
injury type (14 predictors) 
 



How did we do it? 
Possible models 

Calculate estimates of 
Pr(death|x,MAPs) 

Validation measures 

Final model 

Bayesian logistic regression 

True Bayesian? 

MAP of β:s 



True Bayesian, model 7 
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Bayesian logistic regression 

• Necessary asumptions formalized in priors 
• Possibility to incorporate prior knowledge 
• Easy to implement using MCMC 
• Estimates of parameters of interest 
• Precision of estimates through credibility intervals 

which are easy to interpret 
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