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LUNDBECK IN BRIEF medicine

We are an international pharmaceutical company specializing in central
nervous system disorders
> Founded by Hans Lundbeckin 1915 > The future will be more focused on personalized treatment
> An integrated company with core competencies in research, development, > Biomarkes have a central role
production, marketing and sales = Diagnostic biomarkers
- International presence with pharmaceuticals in more than 100 markets = Prognostic biomarkers

> Marketed pharmaceuticals include treatments for Alzheimer’s disease, depression = Predictive biomarkers
and anxiety, epilepsy, Huntington’s disease, insomnia, Parkinson’s disease, and = Biological understanding
schizophrenia/bipolar disorder

> Headquarters in Copenhagen, Denmark

> Approximately 6,000 employees in 57 countries
> 2011 revenue: DKK 16 billion (approx. EUR 2.1 billion/USD 3 billion)

Molecular biomarkers Ll x | 2ot x
— what to measure? Gene expression analysis
DNA — Gene expression — Proteins > Genome wide scan
. = Micro array technology
State — Trait = ~100 000 genes
= Low quality data
Genotype — Phenotype = No prior assumptions
Cost — Quality > Selected candidate genes
. gPCR technology
CNS — Periphery ~100 genes

High quality data
Selected based on prior knowledge

Explorative — Hypothesis
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Scientific questions diagnosis
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. . . x; = Gene expression level for gene j, subject i
> Genes associated with a disease

= Biological understanding > Simple t-test
> Multiple testing
> Prediction of treatment response = Bonferroni
= Companion diagnostic = False Discovery Rate
> Other confounding factors
> Classification of disease state " m'usion criteria
= Diagnosis : Smoking
= Alcohol
Associating genes with x Classification of disease status x
treatment response based on gene expresssion
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where

y, is the outcome depression score (adjusted for baseline score and treatment),

X, is the gene expression for gene g, patienti,
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X;; = Gene expression level for gene j, subject i

P(Subject i has MDD X;,..., X;,) =
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Predictive index for patienti: P (x)=>"7, -
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x Non-trivial when more genes x

Mathematical toolbox than subjects

> Low dimensional data an a lot of data > Classification by logistic regression
= Standard statistical toolbox > Matlab R2010b
> High dimensional data and few data > Pre-processing of data
= Regularization X = Concentrations are log-transformed
. "‘,!"‘”Y 5ol + 2el,) » Continuous variables are centralized to zero mean and scaled to one standard deviation
Binary variables defined to {-1,1}.
minl-L(81 X)+A4],) " v 1.1
# = Missing data imputed with mean or ML estimate.
> LASSO regularization
» Regularization parameter based on cross validation
* Should be repeated > Significance based on permutation test
= Permutation test Predicti " lculated der the ROC
« Should include selection of regularization parameter > Predictive performance calculated as area under the curve.
= ROC curves calculated based on double cross validation, regularization in a inner CV loop.

+ Selection of A and p
= Cross validation
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x Example:
Classifying gender based on mRNA

Estimated model
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> Model parameters xﬁ“,";‘ S v
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> Classify subjects as male/female based on gene expression profile solely. «  Cross validated regularization parameter cws oG v
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Significance Performance
« Probability that a model would : * Trade-off between sensitivity and specificity
describe data equally well by chance. e ROC curve AUC classic measure of predictive power
e Permutation test, repeated 1000 ¢ AUC = 0.84 for final model on training data
times. e Cross validated AUC = 0.79 (10-fold repeated 10 times)
e Estimated p-value = 0/1000 E

o Classifier include 22 genes
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False positive rate

Predictive probability being male

Subjects in randomized order o 05 1
True positive rate

Why so complicated? x Summary and Conclusions x

> Data with many samples and few subjects
> Different computer intensive techniques in use
= Simple models
« Linear regression
« Logistic regression

> Many genes, few subjects
> No clear signal

Method Comment A
= Regularization

Full sample lasso estimation Too optimistic (performance bias) « LASSO
cv To choose smoothing parameter (a) + Ridge
Repeated CV To reduce variability in estimation due to + Lo

random split » Cross validation
Double (outer) CV To remove bias in performance evaluation * Repeated -

« Double cross validation

Repeated double CV To reduce variance in performance evaluation = Permutation test
Permutation test To give p-value for effect
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