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Outline

- Causal inference:
- Why all the fuss?
» Neyman-Rubin model

« Causal inference and survival analysis
» What this talk is not about: An exhaustive survey of the
field
» What it is about: Some background, challenges and
solutions




Causality and statistics

Still true
« association is not causation

- RCT is the golden standard to estimate the average
causal effect of a treatment




» Explosion of scientific publications on causal
inference

» |[SM-2002 had 13 papers on causal
inference

« JSM-2012 had 73, J[SM-2013 had 102

. WHY?




Why?

- Languages for causal reasoning have
been developed; so association and
causality can be desintangle

- RCT has its limitations (efficacy)

. Lots of observational data out there
(efficiency)




Stanford Heart transplant program

- Crowlye & Hu, 1977; Kalbfleish & Prentice, 1980

« Data

- Response: survival times of potential heart transplant
recipients after acceptance in the heart transplant
program

- Treatment: heart transplantation
- Covariates: age, year of entrance in the program, waiting

time, info on prior surgery and donor-recipients
characteristics




man-Rubin model
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Neyman inference: Model

Potential outcomes: Neyman (1923), Rubin (1974).

'ﬁ:&{'

Treatment assignment:

z = 1 for a treated individual,

z = (0 when not treated.

Potential outcomes:
y(1) outcome if treated,
y(0) outcome if not treated.

Cannot be observed!

# (Causal effect at individual level: /

y(1) — y(0)



Neyman inference: Estimand

¥+ Which causal effect can be identified?

# Under certain assumptions we may retrieve the following
estimand from data:

{ T = E(y(l) — y(0)) } Average Causal Effect (ACE)
A

\

1
for a given population




Neyman inference: sample

You have a sample (does not need to be random) of
n individuals:

# n; treated individuals for which we observe:

yll), = =

¥ n. control individuals for which we observe:

y(0), z, =



Observed status of variables

Unit y(1) y(0) =

1 Obs Mis  Obs
2 Obs Mis  Obs
Tlt Obs Vs Obs
1 Mis  Obs Obs
2 Mis  Obs  Obs
N Mis Obs Obs




Neyman inference: Notation

Denote:  3;(1) = y;

and y:(0) =y
We observe two groups:

- treated:

1 1 1
y] 1 y,? I }?)"‘ﬂ.t

+ controls:

0,0 0
YisYay+ve2ln,
Treatment assignment not random. e
Yz
_t_ e . . 'ff *
y" — y° is not of interest (does not estimate 7)



Neyman inference: Unconfoundedness

If treatment z is randomized we have:

y(1),y(0) AL 2

In an observational study this does typically not hold.

In some cases there may exist given a set of covariates x s.t.:

y(1),y(0) AL z|x

Unconfoundedness assumption]



Neyman inference: matching

Hence, construct a new control group which is comparable
with the treated:

% treated:
1 1 t
_fylﬂyij T. ;ym
/N x = black
x \
x = red| x = blue

\ /

# matched controls: \. .- /

e

o

0 ~0 ) e
Y1sYas e vy Ypn,~

ﬁ;’ is a control individual which has same/similar x than y_,}.



Neyman inference: estimand

A matching estimator:

Estimator of what estimand?

Average causal effect 7, estimand to be defined:

T = E(y(1) — y(0))

What is that? —— [

-

.
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Answer: Unit z y(1) y0) =z
1 L' ("OBs) (Mis\, ~ Obs
2 1 | Obs | Mis Obs
: ol & =
ne 1| Obs|| Mis | Obs
Il 0| Mis|\Obs| Obs
Matched pair . 0| Mis '| Obs | Obs
5 W R
ny 0 \Mis| (Obs/ Obs




Neyman inference: randomness
- (Consider the outcomes y(7) and y(0) as given for each individuals.
« Source of randomness is then the treatment assignment z

« The sampling distribution of the estimator is obtained by randomly
reassigning treatment with the constraint that within each matched
pair both treatment (z=17) and non-treatment (z=0) arise.



Source of
randomness

Observations and the
resulting estimator

Unit z y(1) y0) =z

1 1 Mis  Obs
2 1 | Obs| Mis Obs
3 1| Obs| Mis Obs
4 1 | Obs| Mis Obs
ny 1 L Obs/ Mis  Obs
1 0 Mis [Obs\ Obs
2 0 Mis |Obs | Obs
3 0 Mis | Obs { Obs
: Y ‘ ! lll :

Ny 0 Mis | _ng_.x"! Obs




Source of

randomness Unit z y(l) y(0) =
i 0 Mis Obs Obs
2 1 Obs Mis  Obs
3 1 Obs Mis Obs
o 4 0 Mis Obs Obs

Reassigning treatment randomly ' .

Ny 0 Mis Obs Obs
1 1 Obs Mis Obs
2 0 Mis Obs Obs
3 0 Mis Obs Obs

R A = : :
U n; 4 Ji — n, Z Ji Ny 1 Obs Mis Obs




Source of

randomness Unit z y(l) y0) =
1 0 Mis [Obs) Obs
2 1 ;m\m# Obs
3 1 | Obb) Mis  Obs
4 0

Mis (Obs) Obs
R L 3 "l. : T f L_‘ |
cassigning treatment randomly
and the resulting estimator

() 11\[1"‘.: L_Oh"ﬂ Obs

E B OE &

1 1 ﬁObs | Mis  Obs
2 0 is”/ Obs \ Obs
) 3 0 Mis | Obs ) Obs
,\ (1 g \]1 .'“H’] my :;]\. : ,A_
" Z’y g Z il o, 1 (Obs) Mis Obs




Reassign treatment many times!

TR Lo o g Al 1 cona 00,

sample without replacement n;
units and delete the corresponding
units from



Neyman inference: properties

# We have 2" possible randomizations.

# Over these randomizations we have (Neyman, 1923):

» Unbiasedness:

o) =1

p» Variance estimator:

[

]-

m({_) Z{ T,f"t yi—l—nz _ }

(unbiased if additive constant treatment effect)



Neyman inference: Assumptions

Unconfoundedness assumption was made.

Another identifying assumption used in this framework is:

0<Pr(z=1Jx) <1
| lcommon support|

Finally we also assume that the values y(1) and y(0) for a
given individual are not affected by the values taken by z for
any other individual.

SUTVA]



Neyman inference: comments
 In this inferential framework:
Population = Sample

« This is often relevant in studies based on registries. |n such cases
it is often non-trivial to think of the sample as drawn randomly
from super-population (often difficult to define).

- How can such results be generalized? Prediction? Only historical
value?



Other frameworks of inference

« Frequentist inference

— The sample is randomly drawn from a population (often an ill-
defined super-population)

— Otherwise often practical
- Bayesian inference
— Population concept is not needed

— However, strong assumptions are needed: exchangeability and
a parametric model for f(y/x).

— Computationally demanding



Stanford Heart transplant program

- Crowlye & Hu, 1977; Kalbfleish & Prentice, 1980

« Data

- Response: survival times of potential heart transplant
recipients after acceptance in the heart transplant
program

- Treatment: heart transplantation
- Covariates: age, year of entrance in the program, waiting

time, info on prior surgery and donor-recipients
characteristics




Causal effect on a survival time

When outcome is a survival time, some complications
arise

We use the Neyman-Rubin
model




Note 1: Control group must include treated

& Follow-up time

&  Treated
Lexis
diagrams / //
W Treatment starls
4 Follow-up time Controls

Entrance time




Case of randomized treatment

- Assume each time a heart is available, a patient is randomly
chosen.

* In contrast with usual studies, treated and controls cannot be
directly compared: on average, survival time of a treated after
transplantation is shorter than survival time of a control

& Follow-up time Treat+Controls

Note 2: Inference must be
conditioned on waiting time.




Observed treatment

- Among those having a given waiting time, match for covariates
affecting response and treatment.

Note 3. For a given waiting time, conditional on the covariates, the
treatment can be considered as randomized. (unconfoundedness
assumption)



Censoring
« Note 4: Patient’'s survival is censored in two ways:

— end of study, drop out, etc. ; independent mechanism
(assumption)

— controls may receive treatment (need of an extra assumption)



We use the Neyman-Rubin
model
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Theoretical framework
Potential outcomes: Neyman (1923,1990), Rubin (1974).

Adaptation to our context: For an individual which has spent
at least time W in the study without being treated, we define

two potential outcomes:

TY W) = survival time after time W if treated at W,
T(W) = survival time after W if neither treated at W nor later.
Further, consider

DW) 1 if treated at time W,
~ 7| 0if not treated at time W.



-__' '.__,-
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T'F;{Observed status of the variables

As an example, let W = 21 days:

patient ident.  D(21) T1'(21) 7T°21)

101 0 NA C'@l10
66 0 NA 21

4 0 NA T@ls
47 1 51 NA
97 1 calio NA
H& ] 321 NA

Note: NA for non-available; ('@t for censored at time t; TGt
for treated at time ¢.



‘= Censoring due to treatment

* Let C'' (W) denote time to treatment for an individual
not treated at W

* Convention: T(W) is censored when C* (W) < TY(W)

* Assumption D:

For i < tp,

Pr(CT(W) = i|X, TV (W) = 1) = g(X, W)
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End of study, drop out, etc.

Let C® (W) be the time to censoring (other reasons than
treatment) when individual has survived until W

Convention: Survival time censored when

CE(W) < TO(W) or CE(W) < TY(W).

Assumption E: C¥(W) is independent of T°(W) and
T1(W) when conditioning on X.

New notation: 77(W), j = 0,1 denotes time to death
OR censoring.
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Hazards

New estimand: Ay, (t; W) = kL (t; W) — RO(t; W),

where |
S ITIW) =1

B = E.ﬂnl 7 (T‘“( 1

for y=10.1.
Matching estimator: A, (4: W) = A (6 W) -
where

(W) = S .p I(TI (W) = ¢)

RO(t; W),

Sipe T (W) > ¢)

for 7 =0,1.
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Results

Matching estimator of the hazards are unbiased under the
sampling distribution defined earlier. The variance can be
estimated with

Var (En[t; W])
ﬁl(t‘, Hr)(l . E-l{t; TV)) . ﬂ[](t; H”r)(l _ ﬂ-[](t; [I))
Z.J;:nﬂ I(T.-gl >t)—1 Z:E:D:l I(TP >t)—1 |

The estimator of the variance is positively biased
(conservative inference) unless 7)) = T fori =1,...,2n,
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Survival functions

* Denote by T {] (W) < Tﬁéj(ﬁf’) <. < Tf;”jj[lflf’) the
m; < 2ny not censored survival times if

untreated /treated (j = 0, 1), sorted in ascendant order,
and define the survival functions:

FI(t; W) = H (1— 1 (T&](Hf); W))

sl
:..Ttr.}{.f,

* The estimand of interest is the difference in survival
functions

Ag(t; W) = FHt; W) — FO(t; W).
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Inference

An estimator of A4(#; W) is obtained by replacing the
hazards by their estimators, yielding Kaplan and Meier
(1958) type estimators

The asymptotic variance of the Kaplan-Meler estimator
is obtained with the Greenwood's (1926) formula

Inference expected to be conservative when the
treatment effect is not zero (unit-treatment additivity
sense)

A simulation study shows that a Wald test based on the
Greenwood's variance has fairly good properties (size
and power)
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Averaging over waiting times

When few observations, you cannot perform inference
conditional on W.

Then, we can average over the observed waiting times.
However: Interpretation of survival functions problematic.
Inference problematic unless few treated and many controls.
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Heart transplant program

Estimating F' — F°;

~———-  Proporional hazard
— Jaiching estimator

0.10
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0 100 200 300
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Employment subsidy program
Forslund, Johansson and Lindqvist (2004)

* Treatment: employment subsidy for the long-term
unemployed —50% of total wage costs is paid for 6
months

* Response: Unemployment duration (time to
employment)

* covariates;
age,sex, disability"”,citizenship,education,unemployment
history
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* Eligible: at least 25, registered unemployed at least 12
months in a row

* Register data: 98-02; 631,358 eligible, 3% ended into

program; 40% ended in employment

* 630,000 eligible; after matching: 7,651 individuals left



Exact one-to-one matching

Estimating F! — I

0.2 - —— Estimate
------- 95 % c.i.

0 9 18 27 36 45 54
Duration



Some concluding remarks

« Causal inference in observational studies: Protocols defining population,
treatment assignment and control group

« With population wide registers:
- Sample is population
« Large control groups and rich set of background characteristics allow for
good designs
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