Evaluating dose-response under model uncertainty using several nested models

Corine Baayen^{1,2}, Philip Hougaard¹ & Christian Pipper²

¹H. Lundbeck A/S ²University of Copenhagen

October 2014

Baayen, Hougaard & Pipper

Performance of the new approach

Phases of a Clinical Trial

Phases of a Clinical Trial

- Many positive phase II trials are followed by a negative phase III trial
- High drop-out rates in phase III trials
- Often dose adjustments are required in the label after registration of a drug

A dose-finding example

Bretz et al. (2005, Biometrics 61):

Aim:

- Establish PoC
- Estimate MED

Study design:

- Double-blind parallel group trial
- $\bullet\,$ Four active doses (d = 0.05, 0.20, 0.60, 1) and placebo (d=0)
- 20 patients per dose level

Assumptions:

- Normally distributed response variable
- Monotone increasing dose-response function

Dose-finding in Drug Development

Two typical analysis approaches:

- Multiple comparison procedures comparing each dose to placebo
 - Robust to underlying dose-response shape
 - No information beyond observed doses
- Modelling techniques
 - Interpolation between doses
 - Depends on correct a priori choice of unknown dose-response model

Dose-finding in Drug Development

Two typical analysis approaches:

- Multiple comparison procedures comparing each dose to placebo
 - Robust to underlying dose-response shape
 - No information beyond observed doses
- Modelling techniques
 - Interpolation between doses
 - Depends on correct a priori choice of unknown dose-response model

Combined approach:

 Multiple Comparisons and Modelling approach MCP-Mod (recently qualified by EMA)

Multiple comparison-modelling approach (MCP-Mod)

Bretz et al. (2005, Biometrics 61):

- Specify a set of candidate dose-response models $f(d, \theta) = \theta_0 + \theta_1 f^*(d, \theta^*)$ (fix non-linear parameters θ^*)
- Assess each model M_s using appropriately defined contrast tests:

$$T_s = \frac{\mathbf{c}'_s \mathbf{\bar{Y}}}{\sqrt{S^2 \sum_{i=1}^k c_{si}^2 / n_i}}$$

• Established PoC when at least one of the model contrast tests is significant while controlling the FWER, i.e. when:

 $T_{max} = \max_{s} T_{s} > q$, for an appropriate critical value q

- Select the best model(s) from the statistically significant models in the candidate set
- Fit model(s) to the data, also estimate non-linear parameters
- Estimate the target doses from the selected model(s)

MCP-Mod evaluation

Model	Formula	Fixed parameters	Adjusted p-value
Linear	$\theta_0 + \theta_1 d$	-	0.0069
Quadratic (1)	$ heta_0+ heta_1d+ heta_2d^2$	$ED_{50} = 0.2$	0.0048
Quadratic (2)	$ heta_0+ heta_1d+ heta_2d^2$	max resp. at $d{=}0.5$	0.0950
Linear-log	$ heta_0+ heta_1\log(d+1)$	-	0.0028
Exponential (1)	$ heta_0 + heta_1 \exp(d/ heta_2)$	$ED_{50} = 0.2$	0.0448
Exponential (2)	$ heta_0 + heta_1 \exp(d/ heta_2)$	$\theta_2 = 0.15$	0.0866
E _{max}	$\theta_0 + \theta_1 d/(\theta_2 + d)$	$ED_{50} = \theta_2 = 0.2$	0.0017

with ED_{50} the dose providing half of the maximum change

The E_{max} model (with estimated parameters) was chosen for dose estimation, resulting in a Minimal Effective Dose (MED) of 0.16

Lundbeck 🗡

Discussion

Advantages

- Accounts for model uncertainty
- Evaluates both PoC and dose-response

Disadvantages

- Non-linear parameters have to be given a priori
- Significant candidate models are not compared with each other when selection is based on p-values of the contrast tests
- Contrast tests are not ideal for characterizing curves

A new proposal

Define a nested candidate set of increasingly complex parametric dose-response models $M_0 \subset M_1 \subset \ldots \subset M_m$, with M_0 the constant model.

Sequentially evaluate these models as follows:

POC evaluation:

1 Evaluate M_0 against M_s , for all s > 0 while controlling the type I error. Stop if M_0 is not rejected, else

Model selection:

2 Evaluate M_1 against M_s , for all s > 1 while controlling the type I error. Stop if M_1 is not rejected, else

m-1 Evaluate M_{m-1} against M_m . Accept M_m if M_{m-1} is rejected, else, accept M_{m-1}

Test-statistic

To evaluate each model M_s , against the more complex models M_r , r > s, a similar test statistic as proposed by Aerts et al. (1999, JASA 94) can be used:

$$T_{s} = \max_{s+1 \le r \le m} \{2(L_{r} - L_{s})/(p_{r} - p_{s})\},\$$

with:

 L_r : the log-likelihood of model M_r p_r : the degrees of freedom of model M_r

Distributions of the T_s can be simulated based on that, under M_s :

$$2(L_r - L_s) = \sum_{i=r+1}^s 2(L_i - L_{i-1}) \text{ and } 2(L_i - L_{i-1}) \longrightarrow_d \chi_1^2$$

Proposed evaluation - candidate set

	Model	Function
M_0	No effect	θ_0
M_1	Linear	$\theta_0 + \theta_1 d$
M_2	Power function	$ heta_0+ heta_1d^{ heta_2}$
M_3	Four parameter logistic	$\theta_0 + \theta_1 \frac{d^{\theta_2}}{(de^{-\theta_3})^{\theta_2}+1}$
M_4	Unrestricted model	$f(d_i, \theta) = \mu_i$.

Proposed evaluation - results

Evaluated model	Test-statistic	Value	Critical value	Signif. level
Constant	T_0	8.58	3.024	0.10
Linear	T_1	2.55	2	0.227
Power	T_2	1.13	2	0.174
Four-parameter logistic	<i>T</i> ₃	0.00	2	0.157

The power model was selected for dose estimation, resulting in a MED of 0.23

Discussion

- No initial parameter estimates required
- Control over model selection
- All candidate models are compared with each other
- Unrestricted model can be included as a safeguard against model misspecification

Performance of the methods

Simulation studies comparing:

- New approach
- MCP-Mod
- Linear trend test
- F-test of equal means

In terms of

- Type I error
- Power to establish PoC
- Power to select the correct model
- Ability to estimate the MED

Simulation set-up

Design:

- Doses 0, 0.05, 0.2, 0.6 and 1
- Sample sizes per dose group of 10, 25, 50, 75, 100 and 150
- One sided PoC test with $\alpha =$ 0.025 for MCP-Mod approach
- $\bullet\,$ Two sided PoC test with $\alpha=$ 0.05 for proposed approach
- Model selection equivalent to using AIC for both approaches
- New approach was applied with and without the unrestricted model
- 9 data-generating dose-response shapes
- Non-linear parameters estimates for MCP-Mod were chosen equal to population parameters
- 10.000 simulations per shape x sample size combination

Data-generating shapes

Evaluating effect of a drug using multiple models

Power to establish PoC

4-Parameter Logistic Model

- - New approach
- - New approach with unr.
- - MCP-Mod approach
- - Equal means
- - Linear trend

Power to establish PoC

Truncated Logistic Model

- - New approach
- - New approach with unr.
- - MCP-Mod approach
- - Equal means
- - Linear trend

Baayen, Hougaard & Pipper

Model selection performance

4-Parameter Logistic Model

- New approach
- New approach with unr. model
- - MCP-Mod approach

Estimating the MED

Comparison with MCP-Mod:

Sample size 50

- Similar, or slightly worse performance under models in candidate set
- Better performance under monotone models not covered by candidate set
- Worse performance than MCP-Mod under non-monotone models

Sample size 150

• Better performance under all models, except non-monotone models

Conclusions

- Candidate models are compared with each other, not just with the constant model
- Type I error is controlled for establishing PoC and for model selection
- Candidate models are general in the sense that no parameters need to be given a priori
- Under models covered by the candidate set, power to establish PoC is similar or better than MCP-Mod
- Power to select the correct model is higher for the new approach compared to MCP-Mod in most situations
- The new method performed well regarding MED estimation, even under dose-response models that were not included in the candidate set.
- Inclusion of the unrestricted model can be beneficial to:
 - Increase power to detect PoC
 - Detect significant deviations from models in the candidate set

Outlook

• How can we do further inference (e.g. dose estimation), while taking the uncertainty from the model selection step into account?

Thank you for listening!

This work was supported by funding from the European Community's Seventh Framework Programme FP7/2011: Marie Curie Initial Training Network MEDIASRES ("Novel Statistical Methodology for Diagnostic/Prognostic and Therapeutic Studies and Systematic Reviews"; www.mediasres-itn.eu) with the Grant Agreement Number 290025.

