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Problem formulation



Problem

• Model: Stochastic differential equation (SDE)

dXt = b(t,Xt)dt + s(t)dWt, X0 = x0, t ∈ [0, T ].

• Task: Learn the volatility function s from noisy observations on X

at times 0 < t1 < . . . < tn = T :

Yi = Xti + Vi.

The V ’s are unobserved stochastic disturbances.

• Important problem in finance; data subject to microstructure noise

and not on a uniform time grid.
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Method

• Minimalistic in its assumptions on the volatility function, which in

particular can be a stochastic process.

• Intuitive to understand. Ingredients are well-known techniques.

• Posterior inference via Gibbs sampler.
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Learning procedure



Main challenge

• Closed form expression for the posterior distribution not available;

numerically intractable likelihood.

• Remedy: misspecification on purpose

• Alternative: Data augmentation device and some carefully chosen

MCMC sampler.
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Misspecification on purpose

• Model misspecification not necessarily bad, if you know what you are

doing; cf. Gugushvili et al. ’20 and Martin et al. ’18.

• Misspecify the model purposely and act as if the drift b = 0.

Ultimate justification: Girsanov’s theorem.

• Then

Xti = Xti−1 + Ui.

Here

Ui = ∫
ti

ti−1

s(t)dWt ∼ N(0, wi),

and wi = ∫ ti
ti−1

s
2(t)dt. Note that {Ui} are independent.
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Gaussian linear state-space model

• Simplify the notation: xi = Xti , yi = Yi, ui = Ui, vi = Vi. Then

xi = xi−1 + ui,

yi = xi + vi.

This is a linear state-space model.

• Assume that {vi} iid
∼ N(0, ηv) are independent of the Wiener

process W , so that {vi} are independent of {ui}.

• The model becomes Gaussian. This is very convenient.

• Notation:

Xn = {xi}, Yn = {yi}.
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Histogram prior for volatility

• Define N bins

Bk = [tm(k−1), tmk), k = 1, . . . , N.

where n = mN .

• Assume piecewise constant (squared) volatility,

s =
N

∑
k=1

√
θk1Bk

, s
2
=

N

∑
k=1

θk1Bk
.

• Assume {θk} form an inverse Gamma Markov chain. . .
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Inverse Gamma Markov chain

• Fix hyperparameters α1, α and define a Markov chain on

θ1, ζ2, θ2, . . . , ζk, θk, . . . , ζN , θN with (latent) auxiliary variables ζk,

k = 2, . . . , N , and transition densities specified via

θ1 ∼ IG(α1, α1),
ζk+1 ∣ θk ∼ IG(α, αθ−1k ),

θk+1 ∣ ζk+1 ∼ IG(α, αζ−1k+1).

• Mild smoothing/regularisation through the prior-induced positive

correlation of the volatility function across close bins.
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Realisations of volatility under the prior
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Figure 1: Realisations of {θk} with α = 30 for N = 400. If log θk looks like

cWt to you... you are right.
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Prior

• Drift b ≡ 0.

• IGMC for {θi}.

• Diffuse prior for α; improper for α1.

• Noise variance ηv ∼ IG.
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Gibbs sampler

• Sequential updates:

ζ2, . . . , ζN ∣ Xn, α, θ1, . . . , θN (conjugate)
θ1, . . . , θN ∣ Xn, α, ζ2, . . . , ζN (conjugate)

α ∣ θ1, ζ2, . . . , ζN , θN (generic MH)
Xn ∣ Yn, ηv, θ1, . . . , θN (Kalman-based)
ηv ∣ Vn (conjugate)
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Numerical experiment



Heston model i

• Widely used stochastic volatility model (Heston ’93).

• Price process S evolving according to the SDE

dSt = µStdt +
√
ZtStdWt,

where the process Z follows the CIR (Cox et al. ’85) or square

root process,

dZt = κ(θ − Zt)dt + σ
√
ZtdBt.

W and B are correlated Wiener processes with correlation ρ.
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Heston model ii

• By Itō’s formula, logarithm Xt = logSt obeys the diffusion equation

with volatility

s(t) =
√
Zt.

• In the Heston model the volatility function s is random, with its law

not known in closed form.
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Heston model iii

• High frequency observations on the log-price process X with

additive noise Vi ∼ N(0, η). No further knowledge of the data

generation mechanism.

• Simulated path using “realistic” values (cf. Table 1 in Heston ’93)

µ = 0.05, κ = 7, θ = 0.04, σ = 0.6, ρ = −0.6.

• Noise variance ηv = 10
−6

yielding a meaningful signal-to-noise ratio.
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Heston model iv
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Figure 2: Posterior mean and pointwise 95% credible band for N = 80 bins.

True volatility function plotted in red; the black step function is the posterior

mean.
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Application to real data



Exchange rate data i

• Volatility learning from the high frequency exchange rate data.

• EUR/USD tick data (bid prices) for 2 March 2015, subsampled by

retaining every 10th observation. A total of n = 13 025 observations

(subsampling accounts for the assumption of independent additive

measurement noise).

• Log-transform the observed time series and assume the additive

measurement error model.
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Exchange rate data ii
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Figure 3: Top: Logarithm of the EUR/USD exchange rate data for 2 March

2015. Bottom: Posterior mean (black curve) and pointwise 95% credible band

(blue band) for the volatility function.
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Summary



Key points

• A conceptually straightforward, clever nonparametric Bayesian

method for volatility learning under microstructure noise.

• Available as ulıa package; see Schauer and Gugushvili ’20.

• Partial fulfillment of prediction in Godsill et al. ’07 that some

ideas developed originally in the context of audio and music

processing “will also find use in other areas of science and

engineering, such as financial or biomedical data analysis”.
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