

Fourier method for valuation of options under parameter and state uncertainty

Erik Lindström

Centre for Mathematical Sciences

Outline

Introduction

Information structures

Pricing under uncertainty

Results

Pension problem - redistribution of income over time

Mix of assets limits the market risk while protecting against inflation, cf. Mulvey and Holen [2016].

Pension problem - redistribution of income over time

Mix of assets limits the market risk while protecting against inflation, cf. Mulvey and Holen [2016].

We have worked in two directions

- Portfolio optimization
 - Drawdown control, Nystrup et al. [2019]
 - Hyperparameter optimization, Nystrup et al. [2020]
- Option pricing replication of insurance contract, e.g. Lindström [2019]

Information structures

Theory

Definition 16.6 (Filtrations and adaptedness). A filtration is a family $F = \{F_i\}_{i \in [0,\infty)}$ of sub-*x*-algebras of \mathcal{F} with the property that $\mathcal{F}_i \subseteq \mathcal{F}_{i,i}$ for $0 \le s < t$. A stochastic process $X = \{X_t\}_{t \in [0,\infty)}$ is said to be adapted to F if $X_i \in \mathcal{F}_i$, for all *t*.

The natural filtration \mathbb{F}^X of a stochastic process $\{X_t\}_{t \in [0,\infty)}$ is the smallest filtration with respect to which X is adapted, i.e.,

$$\mathcal{F}_t^X = \sigma(X_s; s \le t),$$

and is related to the situation where the available information at time *t* is obtained by observing the values of the process (and nothing else) *X* up to time *t*.

Information structures

Theory

Definition 16.6 (Filtrations and adaptedness). A filtration is a family $F = \{F_i\}_{i \in [0,\infty)}$ of sub-r-algebras of \mathcal{F} with the property that $\mathcal{F}_s \subseteq \mathcal{F}_{i,r}$ for $0 \le s < t$. A stochastic process $X = \{X_t\}_{t \in [0,\infty)}$ is said to be adapted to F if $X_t \in \mathcal{F}_t$, for all t.

The natural filtration \mathbb{F}^X of a stochastic process $\{X_i\}_{i \in [0,\infty)}$ is the smallest filtration with respect to which X is adapted, i.e.,

$$\mathcal{F}_t^X = \sigma(X_s; s \le t),$$

and is related to the situation where the available information at time t is obtained by observing the values of the process (and nothing else) X up to time t.

In theory there is no difference between theory and practice. In practice there is.

Albert Einstein

Risk and uncertainty

There are known knowns; there are things we know that we know.

There are known unknowns; that is to say, there are things that we now know we don't know.

But there are also unknown unknowns – there are things we do not know we don't know.

-Donald Rumsfeld

Former US Secretary of Defense, Donald Rumsfeld in the context of dealing with terrorism

Risk and uncertainty

There are known knowns; there are things we know that we know.

There are known unknowns; that is to say, there are things that we now know we don't know.

But there are also unknown unknowns – there are things we do not know we don't know.

-Donald Rumsfeld

Former US Secretary of Defense, Donald Rumsfeld in the context of dealing with terrorism

 Extensive theory on the difference between risk and uncertainty, cf. Knight [1921].

Risk and uncertainty

There are known knowns; there are things we know that we know. There are known unknowns; that is to say, there are things that we now know we don't know. But there are also unknown unknowns - there are things we do not know we don't know.

Former US Secretary of Defense, Donald Rumsfeld in the context of dealing with terrorism

- Extensive theory on the difference between risk and uncertainty, cf. Knight [1921].
- Ellsberg [1961] showed that agents prefer risks to uncertainty, even when the risky outcome could be a loss while the uncertain is a guaranteed gain!

Consider a model with observable processes S and latent processes V, with $Z_t = [S_t, V_t]$.

Model filtration

It is the smallest σ -algebra generated by the vector-valued process Z_t augmented by the \mathbb{P} -null sets \mathcal{N} ,

$$\mathcal{F}_t = \sigma(Z_u, u \le t) \lor \mathcal{N} \tag{1}$$

Consider a model with observable processes S and latent processes V, with $Z_t = [S_t, V_t]$.

Model filtration

It is the smallest σ -algebra generated by the vector-valued process Z_t augmented by the \mathbb{P} -null sets \mathcal{N} ,

$$\mathcal{F}_t = \sigma(Z_u, u \le t) \lor \mathcal{N} \tag{1}$$

Risk Neutral valuation

The arbitrage free price is given by the risk-neutral expectation

$$\pi_t(\mathcal{S}_t| heta) = p(t, T) \mathsf{E}^{\mathbb{Q}}\left[\Phi(\mathcal{S}_T) | \mathcal{F}_t
ight]$$

where $\Phi(S_T)$ is the contact function e.g. $\Phi(S_T) = \max(S_T - K, 0)$

(2)

Market filtration

It is the filtration generated by discrete observations (prices are recorded at $t_1, \ldots, t_k \leq t$) of the traded assets $S_{t_k}^{Market}$ and possibly also derivatives $\pi_{t_k}^{Market}(S_{t_k})$ written on those assets, augmented by the \mathbb{P} -null sets \mathcal{N} ,

$$\mathcal{F}_{t}^{Obs} = \sigma\left(\left[S_{t_{k}}^{Market}, \ \pi_{t_{k}}^{Market}(S_{t_{k}})\right], \ \forall t_{k} \leq t\right) \lor \mathcal{N} \quad (3)$$

Market filtration

It is the filtration generated by discrete observations (prices are recorded at $t_1, \ldots, t_k \leq t$) of the traded assets $S_{t_k}^{Market}$ and possibly also derivatives $\pi_{t_k}^{Market}(S_{t_k})$ written on those assets, augmented by the \mathbb{P} -null sets \mathcal{N} ,

$$\mathcal{F}_{t}^{Obs} = \sigma\left(\left[S_{t_{k}}^{Market}, \ \pi_{t_{k}}^{Market}(S_{t_{k}})\right], \ \forall t_{k} \leq t\right) \lor \mathcal{N} \quad (3)$$

Note $\mathcal{F}_t^{\textit{Obs}} \subset \mathcal{F}_t$

$$\blacktriangleright \pi_t(S_t|\theta) \in \mathcal{F}_t, \text{ but not } \mathcal{F}_t^{Obs}$$

$$\blacktriangleright \ \pi_t(\mathcal{S}_t|\theta) \in \mathcal{F}_t, \ \text{ but not } \mathcal{F}_t^{Obs}$$

Beautiful results in Biagini and Cont [2007] states that all pricing rules can be represented as conditional expectations.

$$\blacktriangleright \ \pi_t(\mathcal{S}_t|\theta) \in \mathcal{F}_t, \ \text{ but not } \mathcal{F}_t^{Obs}$$

Beautiful results in Biagini and Cont [2007] states that *all* pricing rules can be represented as conditional expectations.

Lindström [2010] suggested to use

$$\begin{aligned} \tilde{\pi}_t(S_t) &= \rho(t, T) \mathbf{E}^{\mathbb{Q}} \left[\Phi(S_T) | \mathcal{F}_t^{Obs} \right] \\ &= \mathbf{E}^{\mathbb{Q}} \left[\rho(t, T) \mathbf{E}^{\mathbb{Q}} \left[\Phi(S_T) | \mathcal{F}_t \right] | \mathcal{F}_t^{Obs} \right] \\ &= \mathbf{E}^{\mathbb{Q}} \left[\pi_t(S_t | \theta) | \mathcal{F}_t^{Obs} \right] = \int \pi_t(S_t | \theta) q(\theta) \mathrm{d}\theta \quad (5) \end{aligned}$$

$$\blacktriangleright \ \pi_t(\mathcal{S}_t|\theta) \in \mathcal{F}_t, \ \text{ but not } \mathcal{F}_t^{Obs}$$

Beautiful results in Biagini and Cont [2007] states that *all* pricing rules can be represented as conditional expectations.

Lindström [2010] suggested to use

$$\begin{aligned} \tilde{\pi}_t(S_t) &= p(t, T) \mathbf{E}^{\mathbb{Q}} \left[\Phi(S_T) | \mathcal{F}_t^{Obs} \right] \\ &= \mathbf{E}^{\mathbb{Q}} \left[p(t, T) \mathbf{E}^{\mathbb{Q}} \left[\Phi(S_T) | \mathcal{F}_t \right] | \mathcal{F}_t^{Obs} \right] \\ &= \mathbf{E}^{\mathbb{Q}} \left[\pi_t(S_t | \theta) | \mathcal{F}_t^{Obs} \right] = \int \pi_t(S_t | \theta) q(\theta) \mathrm{d}\theta \quad (5) \end{aligned}$$

Approximated by Monte Carlo in Lindström [2010].

Fourier pricing

Carr and Madan [1999] showed that the price of a call option is given by $c^{\theta}(T, k) = e^{\alpha k} C^{\theta}(T, k), \quad \alpha > 0$

$$C^{\theta}(T,k) = \frac{e^{-\alpha k}}{\pi} \Re \left[\int_0^{\infty} g(u) \varphi^{\theta}_T(u - (\alpha + 1)i) \right] \mathrm{d}u, \quad (6)$$

Fourier pricing

Carr and Madan [1999] showed that the price of a call option is given by $c^{\theta}(T, k) = e^{\alpha k} C^{\theta}(T, k), \quad \alpha > 0$

$$C^{\theta}(T,k) = \frac{e^{-\alpha k}}{\pi} \Re \left[\int_0^{\infty} g(u) \varphi^{\theta}_T (u - (\alpha + 1)i) \right] \mathrm{d}u, \quad (6)$$

where

$$g(u) = \frac{e^{-iuk}e^{-rT}}{\alpha^2 + \alpha - u^2 + iu(2\alpha + 1)},$$
(7)

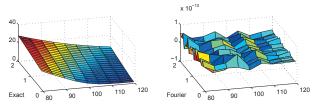
and

$$\varphi_T^{\theta}(u) = \mathbf{E}^{\mathbb{Q}}[e^{ius_T}] = \int_{-\infty}^{\infty} e^{ius_T} q_{\theta}(s_T|s_0) \mathrm{d}s_T \qquad (8)$$

is the characteristic function.

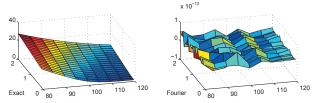
Computational considerations

Adaptive Fourier-Gauss-Laguerre developed in Lindström et al. [2008] was shown in von Sydow et al. [2015] to be faster and more accurate than any other method for "standard" problems.



Computational considerations

Adaptive Fourier-Gauss-Laguerre developed in Lindström et al. [2008] was shown in von Sydow et al. [2015] to be faster and more accurate than any other method for "standard" problems.



Still, the Monte Carlo method in Lindström [2010] is K times more expensive than the ordinary pricing formula.

Fourier methods under uncertainty

$$\widetilde{C}^{\theta}(T,k) = \int C^{\theta}(T,k)q(\theta)d\theta
= \frac{e^{-\alpha k}}{\pi} \Re \left[\int \int_{0}^{\infty} g(u)\varphi^{\theta}_{T}(u-(\alpha+1)i)q(\theta) \right] du d\theta,
= \frac{e^{-\alpha k}}{\pi} \Re \left[\int_{0}^{\infty} g(u)\widetilde{\varphi}^{\theta}(u) \right] du$$
(9)

with

$$\tilde{\varphi}^{\theta}_{T}(u) := \int \varphi^{\theta}_{T} \left(u - (\alpha + 1)i \right) q(\theta) \mathrm{d}\theta \qquad (10)$$

Closed form solution possible?

Exponentially affine parameters

Assume that the parameters and latent states $\theta = [\gamma \ \beta]$ can be partitioned into two disjoint groups γ and β such that the characteristic function is exponentially affine in β

$$\varphi_{T}^{\theta}(\mathbf{v}) = \exp\left[A^{\gamma}(T, \mathbf{v}) + \sum_{l=1}^{p} B_{l}^{\gamma}(T, \mathbf{v})\beta_{l}\right]$$
$$= \exp\left[A^{\gamma}(T, \mathbf{v}) + \mathbf{B}_{\gamma}^{\top}(T, \mathbf{v})\beta\right], \qquad (11)$$

where $A^{\gamma}(T, v)$ and $B_{I}^{\gamma}(T, v)$ are known functions that only depends on γ .

Closed form solution possible?

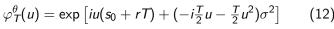
Exponentially affine parameters

Assume that the parameters and latent states $\theta = [\gamma \ \beta]$ can be partitioned into two disjoint groups γ and β such that the characteristic function is exponentially affine in β

$$\varphi_{T}^{\theta}(\mathbf{v}) = \exp\left[A^{\gamma}(T, \mathbf{v}) + \sum_{l=1}^{p} B_{l}^{\gamma}(T, \mathbf{v})\beta_{l}\right]$$
$$= \exp\left[A^{\gamma}(T, \mathbf{v}) + \mathbf{B}_{\gamma}^{\top}(T, \mathbf{v})\beta\right], \qquad (11)$$

where $A^{\gamma}(T, v)$ and $B_{I}^{\gamma}(T, v)$ are known functions that only depends on γ .

Example Black & Scholes. The characteristic function is given by (here $\beta = \sigma^2$)



Main computational result

► Recall the moment generating function for
$$\beta$$
,
 $M^{\beta}(w) = \mathbf{E}^{\mathbb{Q}} \left[e^{w\beta} \right] = \int e^{w\beta} q(\beta) d\beta$

Main computational result

► Recall the moment generating function for β , $M^{\beta}(w) = \mathbf{E}^{\mathbb{Q}} \left[e^{w\beta} \right] = \int e^{w\beta} q(\beta) d\beta$

▶ It then follows (using $v = u - (\alpha + 1)i$) that

$$egin{aligned} & ilde{arphi}_{T}^{ heta}(u) = \int arphi_{T}^{ heta}(v) \, q(eta) \mathrm{d}eta \ &= \exp\left[A^{\gamma}\left(T, u - (lpha + 1)i
ight)
ight] M^{eta}\left(\mathbf{B}_{\gamma}\left(T, u - (lpha + 1)i
ight)
ight) \end{aligned}$$

Remarks

- This can be applied for a large class of models (B&S, Merton, Heston, Bates, Exp Levy process, Time Shifted Exp Levy process) etc.
- Can also be extended to time varying parameters
- Some cases result in new exp. affine functions, e.g. Gamma distributed that develops into the generalized beta prime distribution
- Can use framework to distinguish between suitable (e.g uniform) and unsuitable (e.g. lognormal) distributions

Simulations, Bates model

Combination of Heston Stochastic volatility and Merton Jump diffusion model

$$\mathsf{d}S_t = \tilde{r}S_t \mathrm{d}t + \sqrt{V_t}S_t \mathrm{d}W_t^{(1)} + S_{t-}\mathsf{d}Z_t \tag{13}$$

$$\mathrm{d}V_t = \kappa \left(\Theta - V_t\right) \mathrm{d}t + \eta \sqrt{V_t} \mathrm{d}W_t^{(2)} \tag{14}$$

Simulations, Bates model

Combination of Heston Stochastic volatility and Merton Jump diffusion model

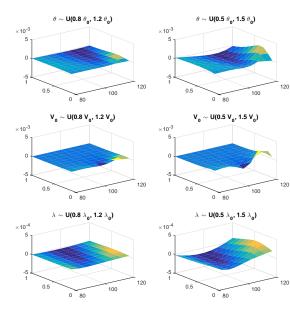
$$\mathrm{d}S_t = \tilde{r}S_t \mathrm{d}t + \sqrt{V_t}S_t \mathrm{d}W_t^{(1)} + S_{t-}\mathrm{d}Z_t \tag{13}$$

$$\mathrm{d}V_t = \kappa \left(\Theta - V_t\right) \mathrm{d}t + \eta \sqrt{V_t} \mathrm{d}W_t^{(2)} \tag{14}$$

The characteristic function is exponentially affine in the initial volatility, V_0 , the long term volatility, Θ , and the jump intensity, λ

$$\varphi_T^{\theta}(u) = \exp\left[A(T, u) + B_{\Theta}(T, u)\Theta + B_{V_0}(T, u)V_0 + B_{\lambda}(T, u)\lambda\right],$$
(15)

Difference in implied volatility



Empirical results

Measure error as

$$Q_{t} = \frac{1}{N} \sum_{i=1}^{N_{t}} \frac{(\pi_{t,i} - \hat{\pi}_{t,i}(\theta))^{2}}{(Ask_{t,i} - Bid_{t,i})^{2}}$$
(16)

Interpretation: Errors smaller than unity indicates that the model is good (enough?)

Empirical results

Measure error as

$$Q_t = \frac{1}{N} \sum_{i=1}^{N_t} \frac{(\pi_{t,i} - \hat{\pi}_{t,i}(\theta))^2}{(Ask_{t,i} - Bid_{t,i})^2}$$
(16)

Interpretation: Errors smaller than unity indicates that the model is good (enough?)

Two empirical studies on S%P 500 data.

- Interpolation use 60 % of data each day for estimation, rest for validation
- Forecasting fit using 50 days of data today, evaluate tomorrow with the S_{t+1} known.

Interpolation, Black & Scholes

	In-sample		Out-of-sample	
Model	Mean	Median	Mean	Median
B&S	3.2681	3.1325	3.3347	3.1620
B&S $\Gamma(\sigma^2)$	3.0302	2.8998	3.1525	2.9947
B&S $\Gamma(\Gamma(\sigma^2))$	3.0356	2.9064	3.1571	3.0084
B&S $\sigma^2(t)$	2.8959	2.8811	2.9706	2.9823
B&S $\Gamma(\sigma^2(t))$	1.1724	1.0298	1.2671	1.0667

Interpolation, Merton

	In-sample		Out-of-sample	
Model	Mean	Median	Mean	Median
B&S	3.2681	3.1325	3.3347	3.1620
B&S $\Gamma(\sigma^2(t))$	1.1724	1.0298	1.2671	1.0667
Merton	1.8566	1.3922	1.9694	1.4379
Merton $\Gamma(\sigma^2)$	1.6397	1.2364	1.7818	1.3077
Merton $\Gamma(\lambda)$	1.5846	1.1863	1.6792	1.2283
Merton $\Gamma(\Gamma(\lambda))$	1.5776	1.1906	1.6725	1.2272
Merton $\sigma^2(t)$	1.5084	1.1009	1.5771	1.1515
Merton $\Gamma(\sigma^2(t))$	0.9336	0.5817	1.0286	0.6349
Merton $\Gamma(\sigma^2(t), \lambda)$	0.8886	0.7738	0.9804	0.9249

Interpolation, Heston

	In-sample		Out-of-sample	
Model	Mean	Median	Mean	Median
B&S	3.2681	3.1325	3.3347	3.1620
B&S $\Gamma(\sigma^2(t))$	1.1724	1.0298	1.2671	1.0667
Merton	1.8566	1.3922	1.9694	1.4379
Merton $\Gamma(\sigma^2(t))$	0.9336	0.5817	1.0286	0.6349
Merton $\Gamma(\sigma^2(t), \lambda)$	0.8886	0.7738	0.9804	0.9249
Heston	0.4008	0.3428	0.4488	0.3876
Heston $\Gamma(V_0)$	0.3824	0.3297	0.4363	0.3671
Heston $\Gamma(\Theta)$	0.3577	0.3070	0.4080	0.3528

Interpolation, Bates

	In-sample		Out-of-sample	
Model	Mean	Median	Mean	Median
B&S	3.2681	3.1325	3.3347	3.1620
B&S $\Gamma(\sigma^2(t))$	1.1724	1.0298	1.2671	1.0667
Merton	1.8566	1.3922	1.9694	1.4379
Merton $\Gamma(\sigma^2(t))$	0.9336	0.5817	1.0286	0.6349
Merton $\Gamma(\sigma^2(t), \lambda)$	0.8886	0.7738	0.9804	0.9249
Heston	0.4008	0.3428	0.4488	0.3876
Heston $\Gamma(\Theta)$	0.3577	0.3070	0.4080	0.3528
Bates	0.2866	0.2412	0.3342	0.2750
Bates $\Gamma(V_0)$	0.2728	0.2430	0.3189	0.2845
Bates $\Gamma(\Theta)$	0.2461	0.2117	0.2893	0.2459
Bates $\Gamma(\lambda)$	0.2312	0.1978	0.2702	0.2263
Bates $\Gamma(\Theta, \lambda)$	0.2263	0.1964	0.2667	0.2271

Forecasting, Black & Scholes

	In-sample		Out-of-sample	
Model	Mean	Median	Mean	Median
BS	3.2956	3.0633	3.5915	3.2825
BS $\Gamma(\sigma)$	3.0861	2.8900	3.4344	3.1278
BS $\Gamma(\Gamma(\sigma^2))$	3.0873	2.8917	3.4353	3.1312
BS $\Gamma(\sigma^2(t))$	1.2714	1.1428	1.9074	1.6112

Forecasting, Merton

	In-sample		Out-of-sample	
Model	Mean	Median	Mean	Median
BS	3.2956	3.0633	3.5915	3.2825
BS $\Gamma(\sigma^2(t))$	1.2714	1.1428	1.9074	1.6112
Merton	2.0215	1.5401	2.5162	2.1699
Merton $\Gamma(\sigma^2)$	1.8147	1.3456	2.3335	1.9903
Merton $\Gamma(\lambda)$	1.7255	1.2991	2.2539	1.9485
Merton $\Gamma(\Gamma(\lambda))$	1.7194	1.2996	2.2510	1.9497
Merton $\sigma^2(t)$	1.6331	1.2123	2.1829	1.8811
Merton $\Gamma(\sigma^2(t))$	1.0745	0.7828	1.8139	1.5238
Merton $\Gamma(\sigma^2(t),\lambda)$	0.9169	0.6698	1.6601	1.3187

Forecasting, Heston

	In-sample		Out-of-sample	
Model	Mean	Median	Mean	Median
BS	3.2956	3.0633	3.5915	3.2825
BS $\Gamma(\sigma^2(t))$	1.2714	1.1428	1.9074	1.6112
Merton	2.0215	1.5401	2.5162	2.1699
Merton $\Gamma(\sigma^2(t),\lambda)$	0.9169	0.6698	1.6601	1.3187
Heston	0.3744	0.3070	1.4453	1.0216
Heston $\Gamma(V_0)$	0.3653	0.3058	1.4348	1.0327
Heston $\Gamma(\Theta)$	0.3483	0.3000	1.4545	1.0177

Forecasting, Bates

	In-sample		Out-of-sample	
Model	Mean	Median	Mean	Median
BS	3.2956	3.0633	3.5915	3.2825
Merton	2.0215	1.5401	2.5162	2.1699
Merton $\Gamma(\sigma^2(t),\lambda)$	0.9169	0.6698	1.6601	1.3187
Heston	0.3744	0.3070	1.4453	1.0216
Heston $\Gamma(\Theta)$	0.3483	0.3000	1.4545	1.0177
Heston $\Gamma(V_0)$	0.3653	0.3058	1.4348	1.0327
Bates	0.2591	0.2241	1.4143	1.0019
Bates $\Gamma(\Theta)$	0.2538	0.2178	1.3820	0.9803
Bates $\Gamma(\lambda)$	0.2338	0.2057	1.3874	0.9893
Bates $\Gamma(\Theta, \lambda)$	0.2303	0.2020	1.3718	0.9848

- The commonly assumed filtrations are too rich, and we demonstrated how to correct for this.
- The correction is given in closed form for "exponentially affine" parameters

- The commonly assumed filtrations are too rich, and we demonstrated how to correct for this.
- The correction is given in closed form for "exponentially affine" parameters
- Simulations reveal new features, especially for parameters that are difficult to estimate from historical data.

- The commonly assumed filtrations are too rich, and we demonstrated how to correct for this.
- The correction is given in closed form for "exponentially affine" parameters
- Simulations reveal new features, especially for parameters that are difficult to estimate from historical data.
- The empirical studies reveals consistent improvements out of sample!
- These are linked to uncertainty rather than risk.

- The commonly assumed filtrations are too rich, and we demonstrated how to correct for this.
- The correction is given in closed form for "exponentially affine" parameters
- Simulations reveal new features, especially for parameters that are difficult to estimate from historical data.
- The empirical studies reveals consistent improvements out of sample!
- These are linked to uncertainty rather than risk.

Thank you for the attention!

References I

Sara Biagini and Rama Cont. Model-free representation of pricing rules as conditional expectations. In *Stochastic processes and applications to mathematical finance*, pages 53–66. World Scientific, 2007.

- Peter Carr and Dilip Madan. Option valuation using the fast fourier transform. *Journal of computational finance*, 2(4):61–73, 1999.
- Daniel Ellsberg. Risk, ambiguity, and the savage axioms. *The quarterly journal of economics*, pages 643–669, 1961.
- Frank Hyneman Knight. *Risk, uncertainty and profit,* volume 31. Houghton Mifflin, 1921.

References II

- Erik Lindström. Implications of parameter uncertainty on option prices. *Advances in Decision Sciences*, 2010, 2010.
- Erik Lindström. Fourier method for valuation of options under parameter and state uncertainty. *The Journal of Derivatives*, 27(2):62–80, 2019.
- Erik Lindström, Jonas Ströjby, Mats Brodén, Magnus Wiktorsson, and Jan Holst. Sequential calibration of options. *Computational Statistics & Data Analysis*, 52 (6):2877–2891, 2008.
- John M Mulvey and Margaret Holen. The evolution of asset classes: Lessons from university endowments. *Journal of Investment Consulting*, 17(2):48–58, 2016.

References III

- Peter Nystrup, Stephen Boyd, Erik Lindström, and Henrik Madsen. Multi-period portfolio selection with drawdown control. *Annals of Operations Research*, 282(1-2): 245–271, 2019.
- Peter Nystrup, Erik Lindström, and Henrik Madsen.
 Hyperparameter optimization for portfolio selection. *The Journal of Financial Data Science*, 2(3):40–54, 2020.
- Lina von Sydow, Lars Josef Höök, Elisabeth Larsson, Erik Lindström, Slobodan Milovanović, Jonas Persson, Victor Shcherbakov, Yuri Shpolyanskiy, Samuel Sirén, Jari Toivanen, et al. Benchop-the benchmarking project in option pricing. *International Journal of Computer Mathematics*, 92(12):2361–2379, 2015.

