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over time

Mix of assets limits the market risk while protecting
against inflation, cf. Mulvey and Holen [2016].

We have worked in two directions
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Information structures
Theory Practice

In theory there is no difference between
theory and practice. In practice there is.

Albert Einstein
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Risk and uncertainty

Former US Secretary of Defense, Donald Rumsfeld in the
context of dealing with terrorism

I Extensive theory on the difference between risk and
uncertainty, cf. Knight [1921].

I Ellsberg [1961] showed that agents prefer risks to
uncertainty, even when the risky outcome could be a
loss while the uncertain is a guaranteed gain!
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Information structures, revisited
Consider a model with observable processes S and latent
processes V, with Zt = [St, Vt].
Model filtration
It is the smallest σ-algebra generated by the vector-valued
process Zt augmented by the P-null sets N ,

Ft = σ(Zu, u ≤ t) ∨N (1)

Risk Neutral valuation
The arbitrage free price is given by the risk-neutral
expectation

πt(St|θ) = p(t,T)EQ [Φ(ST)|Ft] (2)

where Φ(ST) is the contact function e.g.
Φ(ST) = max(ST − K, 0)
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Information structures, revisited

Market filtration
It is the filtration generated by discrete observations (prices
are recorded at t1, . . . , tk ≤ t) of the traded assets SMarket

tk
and possibly also derivatives πMarket

tk (Stk) written on those
assets, augmented by the P-null sets N ,

FObs
t = σ
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tk , πMarket
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]
, ∀tk ≤ t

)
∨N (3)

Note FObs
t ⊂ Ft
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Implications
I πt(St|θ) ∈ Ft, but not FObs

t

I Beautiful results in Biagini and Cont [2007] states
that all pricing rules can be represented as conditional
expectations.

Lindström [2010] suggested to use

π̃t(St) = p(t,T)EQ
[
Φ(ST)|FObs

t
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=
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πt(St|θ)q(θ)dθ (5)

Approximated by Monte Carlo in Lindström [2010].
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Fourier pricing
Carr and Madan [1999] showed that the price of a call
option is given by cθ(T, k) = eαkCθ(T, k), α > 0

Cθ(T, k) = e−αk

π
ℜ
[∫ ∞

0
g(u)φθ

T (u − (α+ 1)i)
]

du, (6)

where
g(u) = e−iuke−rT

α2 + α− u2 + iu(2α+ 1) , (7)

and

φθ
T(u) = EQ[eiusT ] =

∫ ∞

−∞
eiusTqθ(sT|s0)dsT (8)

is the characteristic function.
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Computational considerations
Adaptive Fourier-Gauss-Laguerre developed in Lindström
et al. [2008] was shown in von Sydow et al. [2015] to be
faster and more accurate than any other method for
”standard” problems.
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times more expensive than the ordinary pricing formula.
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Fourier methods under uncertainty

C̃θ(T, k) =
∫

Cθ(T, k)q(θ)dθ

=
e−αk

π
ℜ
[∫ ∫ ∞

0
g(u)φθ

T (u − (α+ 1)i) q(θ)
]

dudθ,

=
e−αk

π
ℜ
[∫ ∞

0
g(u)φ̃θ(u)

]
du (9)

with
φ̃θ

T(u) :=
∫

φθ
T (u − (α+ 1)i) q(θ)dθ (10)



Closed form solution possible?
Exponentially affine parameters
Assume that the parameters and latent states θ = [γ β]
can be partitioned into two disjoint groups γ and β such
that the characteristic function is exponentially affine in β

φθ
T(v) = exp

[
Aγ(T, v) +

p∑
l=1

Bγ
l (T, v)βl

]
= exp

[
Aγ(T, v) + B⊤

γ (T, v)β
]
, (11)

where Aγ(T, v) and Bγ
l (T, v) are known functions that only

depends on γ.

Example Black & Scholes. The characteristic function is
given by (here β = σ2)

φθ
T(u) = exp

[
iu(s0 + rT) + (−iT

2 u − T
2 u2)σ2] (12)
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Main computational result
I Recall the moment generating function for β,

Mβ(w) = EQ [
ewβ

]
=

∫
ewβq(β)dβ

I It then follows (using v = u − (α+ 1)i) that

φ̃θ
T(u) =

∫
φθ

T (v) q(β)dβ

= exp [Aγ (T, u − (α+ 1)i)]Mβ (Bγ (T, u − (α+ 1)i))
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Remarks
I This can be applied for a large class of models (B&S,

Merton, Heston, Bates, Exp Levy process, Time
Shifted Exp Levy process) etc.

I Can also be extended to time varying parameters
I Some cases result in new exp. affine functions, e.g.

Gamma distributed that develops into the generalized
beta prime distribution

I Can use framework to distinguish between suitable
(e.g uniform) and unsuitable (e.g. lognormal)
distributions



Simulations, Bates model
Combination of Heston Stochastic volatility and Merton
Jump diffusion model

dSt =r̃Stdt +
√

VtStdW(1)
t + St−dZt (13)

dVt =κ (Θ− Vt)dt + η
√

VtdW(2)
t (14)

The characteristic function is exponentially affine in the
initial volatility, V0, the long term volatility, Θ, and the
jump intensity, λ

φθ
T(u) = exp [A(T, u) + BΘ(T, u)Θ + BV0(T, u)V0 + Bλ(T, u)λ] ,

(15)
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Difference in implied volatility
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Empirical results
Measure error as

Qt =
1
N

Nt∑
i=1

(πt,i − π̂t,i(θ))
2

(Askt,i − Bidt,i)2 (16)

Interpretation: Errors smaller than unity indicates that
the model is good (enough?)

Two empirical studies on S%P 500 data.
I Interpolation use 60 % of data each day for

estimation, rest for validation
I Forecasting fit using 50 days of data today, evaluate

tomorrow with the St+1 known.
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Interpolation, Black & Scholes
In-sample Out-of-sample

Model Mean Median Mean Median
B&S 3.2681 3.1325 3.3347 3.1620
B&S Γ(σ2) 3.0302 2.8998 3.1525 2.9947
B&S Γ(Γ(σ2)) 3.0356 2.9064 3.1571 3.0084
B&S σ2(t) 2.8959 2.8811 2.9706 2.9823
B&S Γ(σ2(t)) 1.1724 1.0298 1.2671 1.0667



Interpolation, Merton
In-sample Out-of-sample

Model Mean Median Mean Median
B&S 3.2681 3.1325 3.3347 3.1620
B&S Γ(σ2(t)) 1.1724 1.0298 1.2671 1.0667

Merton 1.8566 1.3922 1.9694 1.4379
Merton Γ(σ2) 1.6397 1.2364 1.7818 1.3077
Merton Γ(λ) 1.5846 1.1863 1.6792 1.2283
Merton Γ(Γ(λ)) 1.5776 1.1906 1.6725 1.2272
Merton σ2(t) 1.5084 1.1009 1.5771 1.1515
Merton Γ(σ2(t)) 0.9336 0.5817 1.0286 0.6349
Merton Γ(σ2(t), λ) 0.8886 0.7738 0.9804 0.9249



Interpolation, Heston
In-sample Out-of-sample

Model Mean Median Mean Median
B&S 3.2681 3.1325 3.3347 3.1620
B&S Γ(σ2(t)) 1.1724 1.0298 1.2671 1.0667

Merton 1.8566 1.3922 1.9694 1.4379
Merton Γ(σ2(t)) 0.9336 0.5817 1.0286 0.6349
Merton Γ(σ2(t), λ) 0.8886 0.7738 0.9804 0.9249

Heston 0.4008 0.3428 0.4488 0.3876
Heston Γ(V0) 0.3824 0.3297 0.4363 0.3671
Heston Γ(Θ) 0.3577 0.3070 0.4080 0.3528



Interpolation, Bates
In-sample Out-of-sample

Model Mean Median Mean Median
B&S 3.2681 3.1325 3.3347 3.1620
B&S Γ(σ2(t)) 1.1724 1.0298 1.2671 1.0667

Merton 1.8566 1.3922 1.9694 1.4379
Merton Γ(σ2(t)) 0.9336 0.5817 1.0286 0.6349
Merton Γ(σ2(t), λ) 0.8886 0.7738 0.9804 0.9249

Heston 0.4008 0.3428 0.4488 0.3876
Heston Γ(Θ) 0.3577 0.3070 0.4080 0.3528

Bates 0.2866 0.2412 0.3342 0.2750
Bates Γ(V0) 0.2728 0.2430 0.3189 0.2845
Bates Γ(Θ) 0.2461 0.2117 0.2893 0.2459
Bates Γ(λ) 0.2312 0.1978 0.2702 0.2263
Bates Γ(Θ, λ) 0.2263 0.1964 0.2667 0.2271



Forecasting, Black & Scholes
In-sample Out-of-sample

Model Mean Median Mean Median
BS 3.2956 3.0633 3.5915 3.2825
BS Γ(σ) 3.0861 2.8900 3.4344 3.1278
BS Γ(Γ(σ2)) 3.0873 2.8917 3.4353 3.1312
BS Γ(σ2(t)) 1.2714 1.1428 1.9074 1.6112



Forecasting, Merton
In-sample Out-of-sample

Model Mean Median Mean Median
BS 3.2956 3.0633 3.5915 3.2825
BS Γ(σ2(t)) 1.2714 1.1428 1.9074 1.6112

Merton 2.0215 1.5401 2.5162 2.1699
Merton Γ(σ2) 1.8147 1.3456 2.3335 1.9903
Merton Γ(λ) 1.7255 1.2991 2.2539 1.9485
Merton Γ(Γ(λ)) 1.7194 1.2996 2.2510 1.9497
Merton σ2(t) 1.6331 1.2123 2.1829 1.8811
Merton Γ(σ2(t)) 1.0745 0.7828 1.8139 1.5238
Merton Γ(σ2(t), λ) 0.9169 0.6698 1.6601 1.3187



Forecasting, Heston
In-sample Out-of-sample

Model Mean Median Mean Median
BS 3.2956 3.0633 3.5915 3.2825
BS Γ(σ2(t)) 1.2714 1.1428 1.9074 1.6112

Merton 2.0215 1.5401 2.5162 2.1699
Merton Γ(σ2(t), λ) 0.9169 0.6698 1.6601 1.3187

Heston 0.3744 0.3070 1.4453 1.0216
Heston Γ(V0) 0.3653 0.3058 1.4348 1.0327
Heston Γ(Θ) 0.3483 0.3000 1.4545 1.0177



Forecasting, Bates
In-sample Out-of-sample

Model Mean Median Mean Median
BS 3.2956 3.0633 3.5915 3.2825

Merton 2.0215 1.5401 2.5162 2.1699
Merton Γ(σ2(t), λ) 0.9169 0.6698 1.6601 1.3187

Heston 0.3744 0.3070 1.4453 1.0216
Heston Γ(Θ) 0.3483 0.3000 1.4545 1.0177
Heston Γ(V0) 0.3653 0.3058 1.4348 1.0327

Bates 0.2591 0.2241 1.4143 1.0019
Bates Γ(Θ) 0.2538 0.2178 1.3820 0.9803
Bates Γ(λ) 0.2338 0.2057 1.3874 0.9893
Bates Γ(Θ, λ) 0.2303 0.2020 1.3718 0.9848



Summary & conclusions
I The commonly assumed filtrations are too rich, and

we demonstrated how to correct for this.
I The correction is given in closed form for

”exponentially affine” parameters

I Simulations reveal new features, especially for
parameters that are difficult to estimate from
historical data.

I The empirical studies reveals consistent improvements
out of sample!

I These are linked to uncertainty rather than risk.

Thank you for the attention!
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