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The presented material is based primarily on joint work with

Patrik Andersson, Uppsala University

in particular the paper

“Mortality forecasting using a Lexis-based state-space model”

To appear in Annals of Actuarial Science



Outline of the presentation

I What do we observe?

I Discuss how to go from observed mortality to predicting
future mortality

I From Lee-Carter to state-space models

I Some words about ongoing work and extensions



Some notation:

I all vectors are column vectors

I we will usually not define the dimension of vectors and
matrices – should be clear from context

I X corresponds to a random quantity, x corresponds to an
observation

I x0:n = (x0, . . . , xn)

I all Greek letters corresponds to model parameters



What we observe and structuring of data – Lexis diagrams
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Lexis diagrams: models and likelihood

Assumptions:

I all individuals are independent

I the mortality rate is constant within yearly Lexis squares

Start with a single individual!



Lexis diagrams: models and likelihood – single individual
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Lexis diagrams: models and likelihood – single individual
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Lexis diagrams: models and likelihood – single individual
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Lexis diagrams: models and likelihood – single individual
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Lexis diagrams: models and likelihood – single individual
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Lexis diagrams: models and likelihood – single individual
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Lexis diagrams: models and likelihood – single individual
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Lexis diagrams: models and likelihood – single individual

Single individual: multiply contribution from all Lexis squares
visited by the individual

Single square, many individuals?



Lexis diagrams: models and likelihood – single square
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Lexis diagrams: models and likelihood – single square
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Lexis diagrams: models and likelihood – single square
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Lexis diagrams: models and likelihood – single square
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Lexis diagrams: models and likelihood

Lemma 1
The log-likelihood for the total population, assuming independence
between individuals and piecewise constant mx ,t , is,

l(M) =
∑

(x ,t)∈S

(dx ,t logmx ,t − rx ,tmx ,t), (1)

where S denotes the set of all observed Lexis squares,
M = {mx ,t | (x , t) ∈ S}, dx ,t corresponds to the observed number
of deaths in (x , t) and rx ,t corresponds to the observed
exposure-to-risk in (x , t).

Consequence of Lemma 1:

m̂x ,t =
dx ,t
rx ,t

,

m̂x ,t is often referred to as the “force of mortality” or “mortality
rate”.



Lexis diagrams: models and likelihood – prediction

...but we want to predict future mortality rates...

...and note that Lemma 1 provides no structure between mx ,ts

We need additional structure!

Can be done in a lot of different ways!



Lexis diagrams: models and likelihood

The “Lee-Carter approach”, see e.g. [3]:

1. Estimate m̂x ,t for all (x , t) ∈ S
2. Given {m̂x ,t}, fit a stochastic process to the estimated m̂x ,ts

Sometimes a “post fitting adjustment” is done, due to problems
caused by the two-stage procedure



Lexis diagrams: models and likelihood

In somewhat more detail:

1. Estimate m̂x ,t for all (x , t) ∈ S and let Y be the m× n matrix
defined as

Yx ,t = log m̂x ,t

2. Let ȳ denote the m×1 vector with age-wise estimated average
mortality rates, and make the following SVD-approximation:

(Y − ȳ)x ,t ≈ βxκt

3. Fit a (Gaussian) stochastic process to the estimated κ̂ts

Note: 2. corresponds to dimension reduction



Lexis diagrams: models and likelihood

Note the close resemblance between the above procedures and the
following state space model (see e.g. [1, 2]):{

Yt = µ+ βKt + Ut , Ut ∼ N(0, σ2
uI )

Kt = α + Kt−1 + Vt , Vt ∼ N(0, σ2
v )

where µ, β, α, σu, and σv are unknown parameters and the Kts
correspond to unobservable states

Still, note that Y is a matrix based on estimated mortality rates!



Lexis diagrams: models and likelihood

Note that

I the Lee-Carter model is a model for mortality rates

I we observe death counts

Taking the above into account (Andersson & ML, [4]):

Use a Poisson state space model for death counts



Poisson state space models

The Poisson state space model
Di ,t | Mi ,t , ri ,t ∼ Po(ri ,tMi ,t)

Mi ,t = exp {(ΥXt)i}
Xt+1 = ΓXt + µ+ Vt , Vt ∼ N(0,Σ)

X0 ∼ N(µ0,Σ0)

(?)

Note that

I Υ corresponds to the dimension reduction from m to p (a.k.a.
“EPCA” or “GPCA”), where Xt ∈ Rp, where m is the number
of age groups

I Mi ,t is defined in terms of the standard link-function for a
Poisson GLM and that logMi ,t ≈ Yi ,t



Poisson state space models

Note that, given estimated parameters and state vectors, x0:t , it is
easy to

I decompose the in-sample variation of

M̂i ,t :=
Di ,t

ri ,t

in terms of variation from Mi ,t = exp {(ΥXt)i} and variation
from Di ,t conditional on Mi ,t and ri ,t

I project future mortality rates (and death counts) by first
sampling a trajectory x0:n



Estimation

Following [4], estimation of parameters and state vectors is done
using Stochastic Approximation EM + particle filter techniques

I in a first step Υ is estimated using a Poisson likelihood

I given Υ̂, the remaining model parameters, Γ, µ, and Σ, and
state-vectors are estimated

I the SAEM algorithm makes use of that we have explicit
sufficient statistics for the remaining model parameters

these sufficient statistics are updated iteratively using a
weighted averaging

I in each SAEM update state-vectors are sampled using the
Forward Filtering Backward Smoothing algorithm given the
latest parameter updates



Model evaluation and forecasting

We will split our data into two parts

I in-sample “training data”

I out-of-sample “validation data”

Recall that model (?) allows us to

I predict future mortality rates

I (based on simulations) calculate

Mi ,t =
Di ,t

ri ,t
(force of mortality) (2)

By using (2) for model validation we will capture both

(i) the population (“Poisson”) variation

(ii) the variation from the mortality rates



Model evaluation and forecasting

Concerning model selection, Andersson & ML, [4], suggest an
R2-type measure that

I is based on using the likelihood

I works both in-sample and out-of-sample



Numerical illustrations



Numerical illustrations

We will use the following special case of model (?):

Di ,t | Mi ,t , ri ,t ∼ Po(ri ,tMi ,t)

Mi ,t = exp {(ΥXt)i}
Xt+1 = ΓxxXt + ΓxyYt + µx + Vt , Vt ∼ N(0,Σx)

Yt+1 = ΓyyYt + µy + Ut , Ut ∼ N(0,Σy )

X0 ∼ N(µ0,Σ0)

Y0 ∼ N(µ0,Σ0)



Numerical illustrations

We will

I use Swedish male data from 1930–2016 with ages 0–90

I use 1–3 GPCA components

I illustrate the role of the Poisson part of the state space
modelling

To start off: SWE male population, estimation 1930–1960,
validation 1961–2016

(More examples, and more on model selection, can be found in
Andersson & ML, [4])



(a) 1st GPCA
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(b) 2nd GPCA
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(c) 3rd GPCA
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(d) Population var vs total var
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SWE males, 3 GPCA

(a) Fit 1930–1960, 10 yrs
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(b) Fit 1930–1960, 30 yrs
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(c) Fit 1930–1960, 50 yrs
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(d) Fit 1930–1960, 80 yrs
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(e) Fit 1930–1990, 80 yrs
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(f) Fit 1970–2000, 80 yrs
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Concluding remarks and extensions

We have

I introduced a flexible Poisson state space model which allows
for dimension reduction...

...that avoids two-step estimation procedures

I illustrated the importance of explicitly capturing the Poisson
part of the variation

...but

I we have used SAEM + particle filter techniques
– other choices?

I one could consider allowing for even more flexibility
– neural networks? ...estimation!?

...this is work in progress
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Appendix

Female populations in SWE and US

Essentially similar results, will focus on ages 10, 40, and 80

I SWE females, fit 1950–1980, 2 GPCA

I US females, fit 1950–1980, 3 GPCA



Fit 1950–1980

(a) SWE females, 2 GPCA, 10 yrs

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0e+00

2e−04

4e−04

6e−04

1960 1980 2000
Year

S
im

ul
at

ed
 M

or
ta

lit
y 

R
at

es
(b) 40 yrs
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(c) 80 yrs
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(d) US females, 3 GPCA, 10 yrs

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●
●

● ●

● ●

●
1e−04

2e−04

3e−04

4e−04

1960 1980 2000
Year

S
im

ul
at

ed
 M

or
ta

lit
y 

R
at

es

(e) 40 yrs
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(f) 80 yrs
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