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Problem
► Want to predict the probability of mortgage default*.

► The current state of art method is a logistic regression 
model with handcrafted features.

► The typical variables used are number of outstanding 
accounts, delinquent accounts, monthly income and 
demographic data, such as age and marital status. 

► The most important variable is the number of previous 
overdue payments.
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*Default = Bill past due for more than 90 days



Transaction data
► The information about overdue payments is only available for 

customers who already have been granted a mortgage.

► We wanted to investigate whether it is possible to predict the 
probability of default (PD) earlier, i.e. at the time of loan application.

► In Norway, debit cards are by far the most common payment form -
electronic credit transfers account for nearly 90% of all payments.

► Hence, transactional data may provide a useful description of user 
behavior and consumer credit risk.  
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Example
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The transaction information 
consists of:
• The daily balance on the 

consumers checking account
• The daily balance on the 

consumers savings account
• The daily balance on the 

consumers credit card 
account

• The daily number of 
transactions on the checking 
account

• The daily amount into the 
checking account.



Convolutional Neural Network (CNN)
► Our approach is to view the PD prediction problem 

as a time series classification problem.

► To classify the time series we use deep learning, or 
more specifically a Convolutional Neural Network 
(CNN). 

► A CNN is a neural network with different types of 
hidden layers:
▪ Convolutional layers
▪ Max pooling layers
▪ Fully-connected layers
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Convolutional layer
► A convolutional layer consists of J filters 

of size 

► The j’th filter produces the output yt,j given 
by:

► The most common activation function is  
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Weights



Max-pooling layer
► Pooling layers reduce 

the dimensions of the 
data by combining 
groups of outputs from 
one layer into a single 
neuron in the next layer.

► Max pooling uses the 
maximum value of each 
group.
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Fully connected layer

► Fully connected layers 
connect every neuron in one 
layer to every neuron in 
another layer. 

► Output node j has the value:

► It is in principle the same as 
the traditional MLP neural 
network.  
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Our CNN:
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Transaction data

Convolution 1: 32 filters with size 9 

Max pooling 1 with size 4 

Convolution 2: 64 filters with size 7 

Max pooling 2 with size 2 

Fully connected with 64 output nodes

Fully connected with 2 output nodes 

199 235 
parameters!

Probability of default

A very complex model will fit 
your historical data well, but it 
will have low predictive power!

You always need a validation 
data set!

Both for training and validation 
you need to know the truth

Use ReLU in all layers except for 
the last, where softmax is used.



Data set
► 20,989 mortgage customers

► Training set:
▪ Transaction data from the period 31.12.2011 – 31.12.2013
▪ Default/non-default during the period 01.01.14 – 01.01.15

► Validation set:
▪ A random subset from the training set 

► Test set:
▪ Transaction data from 28.02.2014 – 28.02.15
▪ Default/non-default during the period 01.03.15 – 01.03.16
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Use data augmentation to increase the data set:
Many one-year transaction periods for each 
customer with the same default period.



Very positive results
► Better identification of low risk group:

▪ Increased from 80% with existing 
model to 95% with the new model. 

► Good identification of high risk group:
▪ 50% of those who actually defaulted 

was among the 1% with highest risk 
according to the new model.

https://blogs.dnvgl.com/software/2016/02/now-time-
rethink-concept-low-risk-facility-really-exist/



The value for DNB

Increased digitalization
Less credit losses

Decreased capital requirements
Identify more profitable customers Manual resources 

more focused on 
the complex cases
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Explaining predictions 
from black-box models



Example: Mortgage robot
► XGBoost model which predicts mortgage default

► 28 covariates extracted from 6 transaction time series
▪ Example 1: Mean value of the daily balance on the 

consumers checking account during the last 365 days.
▪ Example 2: Standard deviation of the daily balance on the 

consumers savings account during the last 365 days.

► Why was Ola Nordmann rejected a loan?
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Difficult problem
► To trust a model you need to know how it works!

► Which input variables are most important?
▪ Global explanations
▪ Local explanations

► Difficult problem!
▪ Not even for the simple linear regression model it is 

straightforward to determine the importance of each 
variable if the variables are not independent!
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What is the global importance of x1, x2 and x3?



Dependence
► Usually data sets used 

to estimate machine 
learning models have 
dependent variables.

► Throwing out variables 
that are highly 
correlated with other 
variables often reduces 
the model performance. 
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Local explanation methods

► Model-specific methods:
▪ Deep Lift: For deep learning models
▪ TreeSHAP: For XGBoost models

► Model-agnostic methods:
▪ LIME Local linear regression
▪ Shapley Based on concepts from game theory
▪ Counterfactual Which variables should be altered to  

explanations: obtain a different decision? 
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Shapley values
► Based on concepts from game theory.

► Idea: Predictions can be explained by assuming that each 
variable is a player in a game where the prediction is the 
payout.

► The difference between the prediction and the average 
prediction is fairly distributed among the variables.

► Gives an explicit formula for the importance of every 
variable.
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Shapley values for prediction explanation
► Players = covariates (𝑥ଵ, … , 𝑥ሻ 

► The instance to be explained = 𝒙∗

► Payoff = prediction (𝑓ሺ𝒙∗ሻ)

► Contribution function:  𝑣 𝑆 ൌ 𝐸 𝑓 𝒙 𝒙ௌ ൌ 𝒙ௌ∗  

► Properties

𝑓 𝒙∗ ൌ ∑ 𝜙

ୀ 𝜙 ൌ 𝐸ሾ𝑓 𝒙 ሿ

 𝑓 indep. of 𝑥 ⇒ 𝜙 ൌ 0,         𝑥 , 𝑥 same contribution ⇒ 𝜙 ൌ 𝜙

ௌ ௌ̅
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The Shapley value is the average expected marginal contribution of 
one player after all possible combinations have been considered.



Challenges
Two main challenges:

► The computational complexity of the Shapley formula
▪ Partly solved by subset sampling (KernelSHAP method)

► Estimating the contribution function
▪ Not trivial if the model is non-linear and the covariates are 

dependent
▪ Previous methods assume independent covariates
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Our contribution
► We take the dependence between the features into 

account when estimating the contribution function.
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► The contribution value may be computed as follows:

► We use Monte Carlo integration to compute the integral.

► Hence, we need to be able to generate samples from          
the conditional distribution                          where                      



Continuous variables
► We propose 3 approaches for estimating 𝑝 𝒙ௌ̅|𝒙ௌ ൌ 𝒙ௌ∗ :

1. Assume 𝑝ሺ𝒙ሻ Gaussian => analytical 𝑝 𝒙ௌ̅|𝒙ௌ ൌ 𝒙ௌ∗

2. Use an empirical (conditional) approach where
training observations at 𝒙ௌ̅

 are weighted 
by proximity of 𝒙ௌ to 𝒙ௌ∗

3. Use a combination of the two approaches
 Use the empirical approach when |𝒙ௌ| < D
 Use the Gaussian approach otherwise 
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Categorical and mixed variables
► Fit a multivariate regression tree 

with response 𝒙ௌ̅ and covariates 
𝒙ௌ using the training data.

► Determine the terminal node in 
this tree to which 𝒙ௌ∗ belongs.

► Approximate 𝑝 𝒙ௌ̅|𝒙ௌ ൌ 𝒙ௌ∗ by 
sampling K times from the training 
observations that also attained 
this node number.
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Terminal nodes



Evaluation
► No ground truth         not obvious how to evaluate the 

different approaches.

► We have compared Shapley with and without taking 
dependence into account in several controlled 
experiments. 
▪ Linear and non-linear models
▪ Gaussian and non-Gaussian distributions

► Our results show that the combined approach is superior 
when the model is non-linear and the data follows a non-
linear distribution.
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Read our papers on arXiv
arxiv.org/abs/1903.10464
arxiv.org/abs/2007.01027

Check out our R-package 
shapr on Github and CRAN
github.com/NorskRegnesentral/shapr
https://cran.r-project.org/web/packages/shapr/index.html

Want to know more?
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Thank you
for your attention


