Real World Evidence

In the pharmaceutical industry

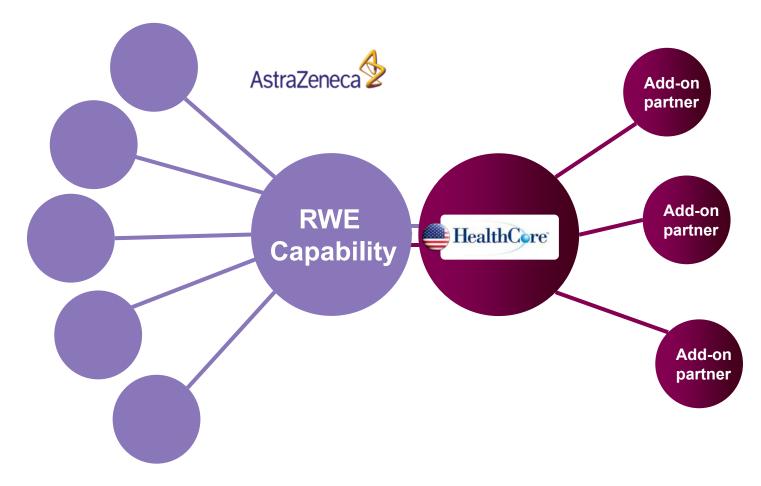
FMS 2011-11-22

Stefan Franzén PhD RWE S&P Expert

Outline

- What is Real World Evidence (RWE)?
- How can RWE be used in the industry?
- Challenges with RWE

Real world evidence (RWE) uses observational data, taking information outside of controlled trials to create insights on diseases, products, and patient populations.


Data sources

- Healthcare data registries
- Insurance claims data e.g. HealthCore
- Disease specific registries
- Prospective registries

- 7.
- •How patients enter the data base?
- •How patients leave the data base?
- •What selection occur in the data base?
- •What is recorded / not recorded?

Strategic data partnerships are a key component of the RWE vision, and HealthCore is the first hub partner

Internal customers

RWE will support R&D and Commercial customers across the product lifecycle

Target selection - Phase Ila

Phase IIb - Phase III / Launch

Commercialization

- Understand unmet medical needs based on RWE
- Support the preparation of reimbursement and regulatory dossiers
- Provide RWE insight to guide trial design and support interpretation of trial results
- Provide RWE insight into product go/no go decisions

- Provide RWE insights that support reimbursement and market access
- Provide RWE comparative effectiveness evidence relative to competitors
- Provide long-term safety and effectiveness evidence

Compare Describe Count

Compare

Describe

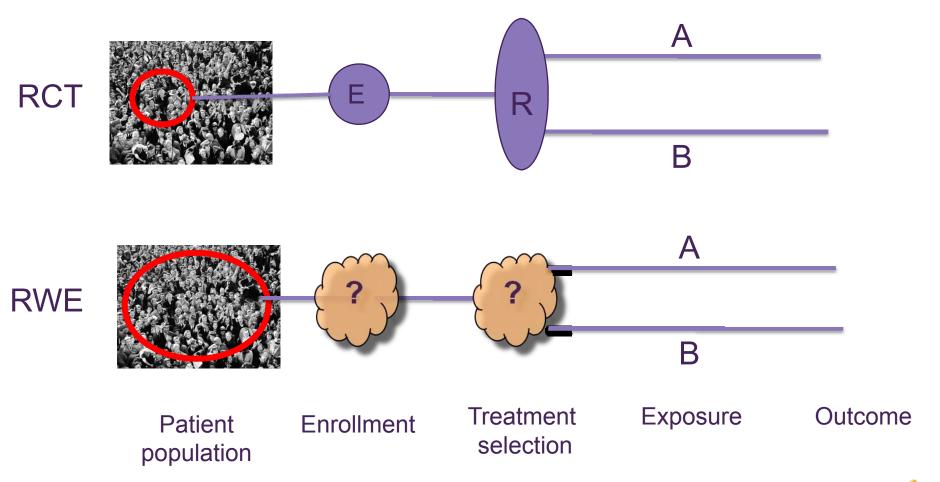
Count

Compare

Describe

Count

Compare


Describe

Count

RWE vs RCT

RWE vs RCT

	RWE	RCT
Patient population	Big, limited selection	Small highly selected
Treatment selection	Uncontrolled	Controlled by randomization
Treatment	As in clinical practice	Restricted by the protocol
Exposure	Prescription fill	Pills returned
Outcome	Often observed indirectly	Directly observed
External validity	High	Limited
Data quality	Low	High
Cost of treatment	Observable	Unknown
Direct comparisons	Invalid due to confounding	Valid due to randomization

Confounding **Predictors Predictors** of outcome of treatment **Treatment** Outcome allocation B

AstraZenec

Example

Smoking Cigarettes is not so bad but watch out for Cigars or Pipes (at least in Canada)

Variable			Cigar or pipe smokers
Mortality rate*	20.2	20.5	35.5

^{*)} per 1000 person-years %

Cochran, Biometrics 1968

Example

Smoking Cigarettes is not so bad but watch out for Cigars or Pipes (at least in Canada)

Variable	Non smokers		Cigar or pipe smokers
Mortality rate*	20.2	20.5	35.5
Average age	54.9	50.5	65.9

^{*)} per 1000 person-years %

Cochran, Biometrics 1968

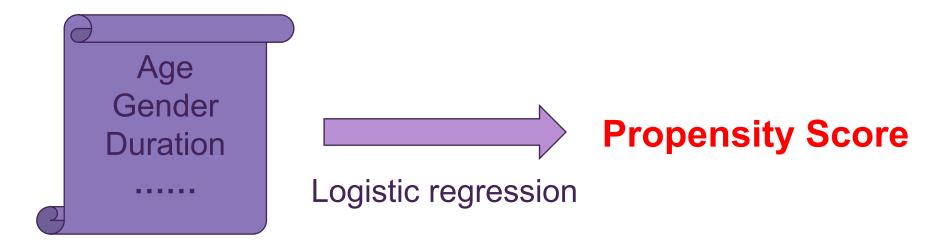
Example

Smoking Cigarettes is not so bad but watch out for Cigars or Pipes (at least in Canada)

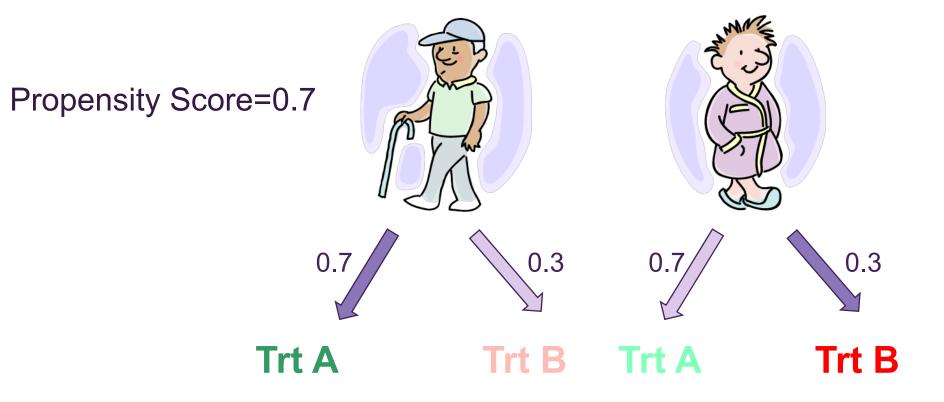
Variable	Non smokers	Cigarette smokers	Cigar or pipe smokers
Mortality rate*	20.2	20.5	35.5
Average age	54.9	50.5	65.9
Adjusted mortality rate*	20.2	26.4	24.0

^{*)} per 1000 person-years %

Cochran, Biometrics 1968


Adjustments for Covariates

- Three common methods of adjusting for confounding covariates:
 - Matching
 - Stratification
 - Regression (Covariate) adjustment

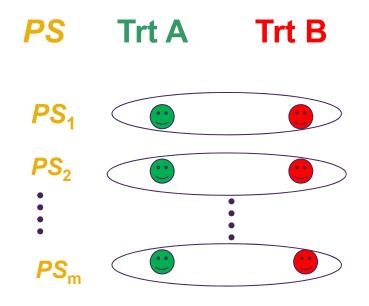

Problematic if the number of covariates is large

Propensity Score*

Replace the <u>collection</u> of confounding covariates with <u>one</u> <u>scalar function</u> of these covariates: the propensity score.

 The conditional prob. of receiving Trt A rather than Trt B, given a collection of observed covariates.

When the propensity scores are balanced across two treatment groups, the distribution of all the covariates are balanced in expectation across the two groups.


Stratifying on the propensity score

- •5 strata takes care of most of the bias*
- Use a stratified analysis

Matching on the propensity score

- Greedy matching
- Optimal matching
- Mahalanobis distance

Practical Issues

- Issues in propensity score estimation
 - How to handle missing baseline covariate values
 - Which covariates should be included
 - Evaluation of treatment group comparability
- Issues in treatment comparison:
 - Which method: matching, stratification, regression
 - How to account for the matching?

Reading

Rosenbaum & Rubin "The central role of the propensity score in observational studies for causal effects. Biometrika 1983

d'Agostino "Tutorial in biostatistics: propensity score methods..." Stat in Med 1998

Austin "A critical appraisal of propensity score matching in the medical literature between 1996 and 2003" Stat in Med 2008

Gou & Fraser "Propensity score analysis" 2010

Rothman & Greenland "Modern Epidemiology" 1998

