Evaluating the generalizability of an RCT using electronic health records data

- Is our RCT representative?
- How can we generalize RCT results?
- Can we use EHR* data as a "control" group?
*) Electronic Health Records

The Danger of Overgeneralization

Difference in data collection

The RCT data

The EHR data

-Patients included by criterias
-Regular visits

- Measurements according to protocol
-Extensite data cleaning
- Usually randomized

Missing could be non-informative
e.g. LDL missing due to lost sample

Placebo effect
-Patients included if they go to the doctor
-Visits as needed

- Measurements as needed
-Data cleaning?
-confounding
Missing is almost never non-informative
e.g. LDL not needed and thus "missing"

An illustrative(?) example

- One large global CV outcome study in primary prevention with liberal inclusion/exclusion criteria
- Three CPRD cohorts indicated for primary prevention of CV disease were created from a 6 year study window (2003-2008):
- Cohort 1: patients meeting the trial's inclusion criteria and excluding those with prior CV history or CRP value indicating severe bacterial infection
- Cohort 2: patients meeting NICE guidelines for recommended statin therapy in primary prevention of CV disease

Sample sizes and variables

Samplesizes

Data set	N	N complete cases	N after imputation
RCT	17622	17622	
CPRD1	8892	894	8892
CPRD3	78008	11567	78008
Realistic cohort			

The analysis was run on two different sets of variables:

- Framingham variables: AGE, BMI, TC, sex, smoking
- All* variables: AGE, ANTIHT_USE, ASA_USE, BMI, CRP , DBP, FPG , HDL, LDL , SBP , TC , TG , sex , smoking, weight

If we have the RCT results, what can we say about the effect in "different" population?

Is our trial representative?

-compare patient characteristics

- One variable at a time
- All variables at the same time
- Convex hull
- Cross matching
- (Linear) discriminant analysis

Descriptive statistics per variable

	RCT mean		RCT std	EHR mean EHR std	
GENDER_MALE	0.52	0.50	0.62	0.49	
AGE	69	9.6	66	7.7	
WEIGHT	82	19	82	18	
BMI	29	5.9	29	5.5	
SBP	140	20	136	17	
DBP	79	11	81	9.0	
CIGS/DAY	13.6	11.6	12.9	9.5	
SMOKER	0.10	0.30	0.16	0.36	
FPG	106	36	95	12	
GLUC	118	55	95	12	
LDL	97	28	104	19	
HDL	52	16	51	15	
TG	158	69	138	73	
TC	181	36	183	24	
HBA1C	7.3	1.5	5.7	0.4	
CRP	10	18	6.8	8.9	
ASA USE	0.43	0.49	0.19	0.39	
ANTIHT USE	0.84	0.36	0.50	0.50	
MEDHIST DM	0.26	0.44	0.00067	0.023	
FAMHIST CHD	0.31	0.46	0.11	0.32	

Convex hull

Idea:

Construct the convex hull for the RCT patients and see how many RWE patients fall into that

Definition: the convex hull for a set S is the smallest convex set that contains s

1 d convex hull: The range
2 d convex hull:
K d convex hull: Wrap it in (stiff) paper...
-

Example:

```
matchit(formula = trial ~ AGE + BMI + CRP + SBP + DBP +
sex + LDL + FPG + CR_CL + TC + TG + HDL,
    data=anadata,
    method="nearest",
    discard="hull.control")
```

Sample sizes:

	EHR patients
All	3933
In the RCT convex hull	254
Discarded	3679

Almost all of the EHR patients lies outside of the convex hull for the RCT patients.

It's enough to be extreme on one variable (or in one direction)...

Cross matching

Cross matching as a test comparing multivariate distributions Rosenbaum (2005)
Idea: Merge all the data
Create match pairs using the Mahalanobis distance
Count the number of cross matches (A matched to B)
The number of cross matches has a know distribution under H_{0}

Linear discriminant analysis

Try linear discriminant analysis to find a linear function that separates RCT and EHR patients

Coefficients of linear discriminants: LD1
$\begin{array}{lr}\text { AGE_I } & -0.066845646 \\ \text { BMI } & 0.014905047\end{array}$
CRP $\quad-0.011794747$
SBP $\quad-0.016440719$
DBP 0.044964972
LDL 0.839770845
FPG $\quad-0.214263226$
CR_CL -0.013896685
TC 0.005260017
TG $\quad-0.163245948$
HDL $\quad-0.437969649$

Comparing distribution of posterior prediction probabilities

-Propensity score (Stuart \&Cole 2010, 2011)

- Cross design synthesis (Kaizar 2009)
-Hieraricical models (Prevost et al 2000)

The nice thing about propensity score

$$
e(X)=P\left(T_{i} \mid X_{i}\right)
$$

For us

- S_{i} indicates membership in the RCT sample
- T_{i} indicates treatment assignment $T_{i}=\{1,0\}$
-covariates X
- potential outcomes:
$-Y_{i}(1)$ would be observed under treatment
$\cdot Y_{i}(0)$ would be observed under control

The sample average treatment effect

$$
\mathrm{SATE}=\frac{1}{n} \sum_{i \in\left\{s_{i}=1\right\}}\left(Y_{i}(1)-Y_{i}(0)\right)
$$

The population average treatment effect

$$
\text { PATE }=\frac{1}{N} \sum_{i=1}^{N}\left(Y_{i}(1)-Y_{i}(0)\right)
$$

Key assumptions

All patients in the population have

$$
0<P\left(S_{i}=1 \mid X_{i}\right)<1
$$

some probability of being in the trial and no patients are always in the trial

Inclusion in the trial does not depend on
$\mathrm{S} \perp(Y(0), Y(1)) \mid X$ the potential outcomes except though the covariates X

Treatment assignment does not depend on the inclusion into the trial or the potential outcomes except through X

Propensity score as a distance meaure

$$
\Delta_{p}=\frac{1}{n} \sum_{i \in\left\{S_{i}=1\right\}} e_{i}(x)-\frac{1}{N-n} \sum_{i \in\left\{\left\{_{i}=0\right\}\right.} e_{i}(x)
$$

So, what consitues a "big" differnece?
Suggestion: big if $\quad \Delta_{p}>c \times \sigma\left(\hat{p}_{i}\right)$
$\mathrm{C}=0.25$ or 0.1 has been suggested...

Propensity score, all varibles

Propensity scores based on risk factors

Comparing distribution of propensity scores, PLS-glm Cohort1 FH

$\Delta=0.06$

Comparing distribution of propensity scores, PLS-gIm Cohort3 FH

Predict the results in the EHR population (PATE)

IPSW : Inverse probability of selection weight

$$
\text { Weight: } \quad w_{i}=\frac{P\left(S_{i}=i\right)}{P\left(S_{i}=1 \mid X_{i}\right)}
$$

In our case the endpoint is a time to event so we'll fit a weighted Cox proportional hazards model with the partial likelihood

$$
\left.L(\beta)=\prod_{i=1}^{n}\left[\frac{\exp \left(\beta X_{i}\right) \times w_{i}}{\left.\sum_{k=1}^{n} 1_{\left\{i \in R_{k}\right.}(t)\right\}}\right]_{i, j}^{Y_{i}}\left(\beta X_{k}\right) \times w_{k}\right]
$$

Predicted treatment effect in the example

Cohort	Variables used	Hazard ratio	Lower	Upper	p-value
RCT		0.551	0.448	0.678	<0.0001
Cohort1	All	0.555	0.462	0.666	<0.0001
Cohort1	Framingham	0.557	0.460	0.675	<0.0001
Cohort3	All	0.607	0.519	0.709	<0.0001
Cohort3	Framingham	0.785	0.728	0.847	<0.0001

-The predicted treatment effect is slightly closer to 1 which indicates an under representation of "low" risk patients in the Jupiter population
-The difference is smallest for cohort 1 and largest for cohort 3
-Risk factors don't account for all confounding(?)

What's next?

pacEHR

EHR data as a control group

Weight the EHR data by: $\frac{P\left(S_{i}=1 \mid X_{i}\right)}{P\left(S_{i}=0 \mid X_{i}\right)}$

Weight the HER to estimate the treatment outcome that would have been observed if the HER data had the same distribution of patients characteristics as the RCT

Sort of like estimating the ATT in an observational study....

Doing without patient level RCT data...

Evaluate the generalizability using Presslee's method

Use weights from the method of moments (Signorovich 2012)

Doing without tyhe RCT patient data 1

Idea: Use the RCT inclusion/exclusion critera to split a registry cohort into RCT eligible and RCT non eligible patients. No acctual RCT data needed!

Define the sub population average treatment effect in each sub population

PATE

$$
\Delta=\frac{1}{N} \sum_{i=1}^{N}\left(Y_{i}(1)-Y_{i}(0)\right)
$$

$\operatorname{SPATE}(\mathrm{I}) \Delta(I)=\frac{1}{N_{I}} \sum_{i=1}^{N} 1_{i \in I I}\left(Y_{i}(1)-Y_{i}(0)\right)$
$\operatorname{SPATE}(E) \Delta(E)=\frac{1}{N_{E}} \sum_{i=1}^{N} 1_{i \in E\}}\left(Y_{i}(1)-Y_{i}(0)\right)$

$$
\begin{aligned}
\gamma & =\Delta(I)-\Delta \\
& =\pi_{E}(\Delta(I)-\Delta(E))
\end{aligned}
$$

$$
\hat{\gamma}=\hat{\pi}_{E}(\hat{\Delta}(I)-\hat{\Delta}(E))
$$

Doing without patient level data 2

Estimate the weights using logistic regression: $w_{i}=\exp \left(\alpha+x_{i}^{T} \beta\right)$
Method of moments, solve $\frac{\sum x_{i} \exp \left(x_{i}^{T} \hat{\beta}\right)}{\sum \exp \left(x_{i}^{T} \hat{\beta}\right)}-\bar{x}_{C}=0$

References

Imai K, King G, Stuart EA. Misunderstandings between experimentalists and observationalists about causal inference. Journal of the Royal Statistical Society A. 2008; 171: 481-502

Stuart EA, Cole SR, Bradshaw CP, Leaf PJ. The use of propensity scores to assess the generalizability of results from randomized trials. Journal of the Royal Statistical Society A. 2011; 174: 369-386

Cole SR, Stuart EA. Generalizing evidence from randomized clinical trials to target populations. American Journal of Epidemiology. 2010; 172: 107-115

Rosenbaum PR. An exact distribution-free test comparing two multivariate distributions based on adjacency. Journal of the Royal Statistical Society B. 2005; 67: 515-530

Prevost TC, Abrams KR, Jones DR. Hierarcical models in generalized synthesis of evidence: an example based on studies of breast cancer screening. Statistics in Medicine. 2000; 19: 3359-3376

Signorovich et al Matching-Adjusted Indirect Comparisons: A New Tool for Timely Comparative Effectiveness Research. Value in Health. 2012; 12: 940-947

Pressler T. R. Kaizar E. E. The use of propensity scores and observational data to estimate randomized controlled trial generalizability bias . Statistics in Medicine. 2013; 32: 3552-3568

