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Outline

- Causal inference:
- Why all the fuss?
- Neyman-Rubin model

- Causal inference and survival analysis
- What this talk is not about: An exhaustive survey of the
field
- What it is about: Some background, challenges and
solutions




Causality and statistics

Still true
« association is not causation

- RCT is the golden standard to estimate the average
causal effect of a treatment

Yet ——»




- Explosion of scientific publications on causal
inference

» ]SM-2002 had 13 papers on causal
inference

- |[SM-2012 had 73, |[SM-2013 had 102

- WHY? —




Why?

- Languages for causal reasoning have
been developed; so association and
causality can be desintangle

» RCT has its limitations (efficacy)

. Lots of observational data out there
(efficiency)




Stanford Heart transplant program

- Crowlye & Hu, 1977; Kalbfleish & Prentice, 1980

- Data

- Response: survival times of potential heart transplant
recipients after acceptance in the heart transplant
program

- Treatment: heart transplantation
- Covariates: age, year of entrance in the program, waiting

time, info on prior surgery and donor-recipients
characteristics




Neyman-Rubin model
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Neyman inference: Model

Potential outcomes: Neyman (1923), Rubin (1974).

Treatment assignment:
z = 1 for a treated individual,
z = 0 when not treated.

Potential outcomes:
y(1) outcome if treated,

y(0) outcome if not treated.
Cannot be observed!

Causal effect at individual level: /

y(1) —y(0)



Neyman inference: Estimand

Which causal effect can be identified?
Under certain assumptions we may retrieve the following
estimand from data:

{7‘ -~ ]%‘(y(l) — y(0)) } Average Causal Effect (ACE)

\

for a given population




Neyman inference: sample

You have a sample (does not need to be random) of
n individuals:

n; treated individuals for which we observe:

y(1), z, =z

n. control individuals for which we observe:

y(0), 2, =



Observed status of variables

Unit z y(l) y0) =

1 1 Obs Mis Obs
2 1 Obs Mis Obs
Ny 1 Obs Mis Obs
1 0 Mis Obs Obs
2 0 Mis Obs Obs
N, 0 Mis Obs Obs




Neyman inference: Notation

Denote: w;(1) = yzl and y;(0) = y?

We observe two groups:

treated:
Yis Y oo s Yn,

controls:
0 0 0
Y1:Y2, - - -aync

Treatment assignment not random.
ACYE Z

y* — y° is not of interest (does not estimate 7)



Neyman inference: Unconfoundedness

If treatment z is randomized we have:

y(1),y(0) 1L 2

In an observational study this does typically not hold.

In some cases there may exist given a set of covariates x s.t.:

{ y(1),3(0) L zlx }

[Unconfoundedness assumption]



Neyman inference: matching

Hence, construct a new control group which is comparable
with the treated:

treated:

r = black

T = red

matched controls: *’"II

~() ‘”0 ~()
y]_ y23 ¢ 3ly’n,t

77 is a control individual which has same/similar x than y;.



Neyman inference: estimand

A matching estimator:
T = . — — o
n, 4 Y n, Yi

Estimator of what estimand?

Average causal effect 7, estimand to be defined:

7= E(y(1) —y(0))
1 ? Vi
What is that — . oni




Answer:

e

Matched pair
2
2
T =
27’&13 -
1=1

Unit z y(0) =z

1 1 [ Olﬁ\ Obs
2 1 | Obs Obs
Ny 1/ Obs Obs
1 0| Mis Obs
2 0| Mis Obs




Neyman inference: randomness
« Consider the outcomes y(7) and y(0) as given for each individuals.
« Source of randomness is then the treatment assignment z

« The sampling distribution of the estimator is obtained by randomly
reassigning treatment with the constraint that within each matched
pair both treatment (z=1) and non-treatment (z=0) arise.



Source of
randomness

I

Observations and the
resulting estimator

Unit z y(l) wy0) =z

1 1 /O'ﬁ\ Mis  Obs
2 1 | Obs| Mis Obs
3 1 | Obs | Mis Obs
4 1 | Obs| Mis Obs
Tt 1 Obs
1 0 Obs
2 0 Obs
3 0 Obs
Ny 0 Obs




Source of

randomness Unit z y(1) y0) =z
1 0 Mis Obs Obs
2 1 Obs Mis Obs
3 1 Obs Mis Obs
4 0 Mis Obs Obs

Reassigning treatment randomly .

Ny 0 Mis Obs Obs
1 1 Obs Mis Obs
2 0 Mis Obs Obs
3 0 Mis Obs Obs

N AU A . 2 : :
T n_t ; Yi — n_t - Yi Ty 1 Obs Mis Obs




Source of

randomness Unit 2 T
1 0 Mlb @T@ Obs
2 1 Obs
3 1| Obs | Mis Obs
4 0 Mis Obs Obs

Reassigning treatment randomly
and the resulting estimator

i\’ﬁs :Obs

0

1 Mis  Obs
0 Mis / Obs \ Obs
0 Mis Obs

Ne 1 @ Mis  Obs

I
|




Reassign treatment many times!

units 1,...,n; and 1,...,n

sample without replacement n;
units and delete the corresponding
units from



Neyman inference: properties

We have 2" possible randomizations.

Over these randomizations we have (Neyman, 1923):

» Unbiasedness:
E(t)=rT1

» Variance estimator:

V(L?’ 'nt Z {(y?, yz+nt) o T}
e |

(unbiased if additive constant treatment effect)



Neyman inference: Assumptions

Unconfoundedness assumption was made.

Another identifying assumption used in this framework is:

0« Priec il |
| | . [common support]

Finally we also assume that the values y(1) and y(0) for a
given individual are not affected by the values taken by z for
any other individual.

[SUTVA]



Neyman inference: comments

« |n this inferential framework:
Population = Sample

« This is often relevant in studies based on registries. In such cases
it is often non-trivial to think of the sample as drawn randomly
from super-population (often difficult to define).

« How can such results be generalized? Prediction? Only historical
value?



Other frameworks of inference

 Frequentist inference

— The sample is randomly drawn from a population (often an ill-
defined super-population)

— Otherwise often practical
« Bayesian inference
— Population concept is not needed

— However, strong assumptions are needed: exchangeability and
a parametric model for f(y/x).

— Computationally demanding



Stanford Heart transplant program

- Crowlye & Hu, 1977; Kalbfleish & Prentice, 1980

- Data

- Response: survival times of potential heart transplant
recipients after acceptance in the heart transplant
program

- Treatment: heart transplantation
- Covariates: age, year of entrance in the program, waiting

time, info on prior surgery and donor-recipients
characteristics




Causal effect on a survival time

When outcome is a survival time, some complications
arise

We use the Neyman-Rubin




Note 1: Control group must include treated

A Follow-up time

® Treated

dragrams /// / /

Treatment starts

A Follow-up time Controls

Entrance time




Case of randomized treatment

« Assume each time a heart is available, a patient is randomly
chosen.

 In contrast with usual studies, treated and controls cannot be
directly compared: on average, survival time of a treated after
transplantation is shorter than survival time of a control

a Follow-up time Treat+Controls

Note 2: Inference must be
conditioned on waiting time.

v




Observed treatment

« Among those having a given waiting time, match for covariates
affecting response and treatment.

Note 3: For a given waiting time, conditional on the covariates, the
treatment can be considered as randomized. (unconfoundedness
assumption)



Censoring

 Note 4: Patient’s survival is censored in two ways:

— end of study, drop out, etc. ; independent mechanism
(assumption)

— controls may receive treatment (need of an extra assumption)



We use the Neyman-Rubin
model
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- Theoretical framework

Potential outcomes: Neyman (1923,1990), Rubin (1974).

Adaptation to our context: For an individual which has spent
at least time W in the study without being treated, we define

two potential outcomes:

TY(W) = survival time after time W if treated at W,
T°(W) = survival time after W if neither treated at W nor later.

Further, consider

1 if treated at time W,
0 if not treated at time W.

D(W) = {



-®. Observed status of the variables

As an example, let W = 21 days:

patient ident.  D(21) T%(21) TY(21)

101 0 NA C@10
66 0 NA 21

4 0 NA TQld
47 1 ol NA
97 1 CQll0 NA
28 1 321 NA

Note: NA for non-available: C'@t for censored at time t;: TQ¢
for treated at time t.



Censoring due to treatment

e Let CT (W) denote time to treatment for an individual
not treated at W

 Convention: T°(W) is censored when CT(W) < TO(W)

* Assumption D:

For 7 < to,

Pr(CT(W) =i|X, TOW) =1%) = ¢(X, W)



End of study, drop out, etc.

Let C'* (W) be the time to censoring (other reasons than
treatment) when individual has survived until W

Convention: Survival time censored when

CEW) < TO(W) or CE(W) < TH(W).

Assumption E: CF(W) is independent of T9(WW) and
T'(W) when conditioning on X.

New notation: 77(W), j = 0,1 denotes time to death
OR censoring.



Hazards

New estimand: A, (t; W) = h'(t; W) — ho(t; W),
where |

S I(T (W) =t
ST (W) > 1)

W (W) =

for 7 =0, 1.
Matching estimator: Ay (t; W) = ht(t; W) — AV (t; W),
where

> ip—1 1T (W)

B (W) = .
Zi:Dzl I(TLJ(W)

?

t)
t

)

IV

for 7 =0,1.



ul - Results

Matching estimator of the hazards are unbiased under the
sampling distribution defined earlier. The variance can be
estimated with

m (Kh(t;W))
RUEW)(L R (EW) RO W)L - RO W)
Zz’:Dzlj(Tilzt)_l Yip—1 (TP >t) =1

The estimator of the variance is positively biased
(conservative inference) unless T =T fori =1,...,2n,




Survival functions

* Denote by T€1)(W) < ng)(W) << T&,&j)(W) the
m; < 2n1 not censored survival times if

untreated/treated (j = 0, 1), sorted in ascendant order,
and define the survival functions:

FIW) = [T = w(T (w);w))

el
@.T(z.)<t

e The estimand of interest is the difference in survival
functions

Ag(t; W) = FYt; W) — FO(t; W).



Inference

An estimator of A(¢; W) is obtained by replacing the
hazards by their estimators, yielding Kaplan and Meier
(1958) type estimators

The asymptotic variance of the Kaplan-Meier estimator
is obtained with the Greenwood’s (1926) formula

Inference expected to be conservative when the
treatment effect is not zero (unit-treatment additivity
sense)

A simulation study shows that a Wald test based on the
Greenwood's variance has fairly good properties (size
and power)
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< Averaging over waiting times

When few observations, you cannot perform inference
conditional on WW.

Then, we can average over the observed waiting times.
However: Interpretation of survival functions problematic.
Inference problematic unless few treated and many controls.
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= Heart transplant program
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= Employment subsidy program

Forslund, Johansson and Lindqvist (2004)

v A

* Treatment: employment subsidy for the long-term
unemployed —50% of total wage costs is paid for 6
months

* Response: Unemployment duration (time to
employment)

® covariates:
age,sex, disability”,citizenship,education,unemployment
history



* Eligible: at least 25, registered unemployed at least 12
months in a row

e Register data: 98-02; 631,358 eligible, 3% ended into
program; 40% ended in employment

* 630,000 eligible; after matching: 7,651 individuals left
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Exact one-to-one matching

Estimating F'' — FV:

k4

| Average |

—— Estimate
------- 95 % c.i.
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Some concluding remarks

« Causal inference in observational studies: Protocols defining population,
treatment assignment and control group

- With population wide registers:
- Sample is population
- Large control groups and rich set of background characteristics allow for
good designs
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