

From birth to death: Statistical analysis of life courses

Xavier de Luna, Umeå University, Sweden

Department of Statistics – USBE @ Umeå University

Lab for Statistics and Register Studies

Umeå SIMSAM Lab & ALC

Swedish Statistical Society, Stockholm, March 2014

Outline

- Life course, trajectory, biography; sequence of events
- Life course as the unit of study: models and methods
 - Family life trajectories and retirement decisions
 Joint work with Ingrid Svensson, Emma Lundholm and Gunnar Malmberg (Ageing and Living Condition program, Umeå)
 - Effect of early retirement on health

Joint work with Nicola Barban (Groningen), Francesco Billari (Oxford), Ingrid Svensson and Emma Lundholm (Umeå)

Life biographies data

State-space: $S = \{S(ingle), M(arried), C(ohabiting)\}$

For individual i we observe $s_{it} \in S$ for $t = 1, 2, \ldots, T$

Two life biographies:

Unit of study

Transition between states (event history analysis, Markov Chains)

OR

• State trajectories

Two life biographies:

SSSSCCCCCMMMMMMMMMMM

SSSSSSSSSSCCCCCCCCCCCCCCC

Sequence analysis

- A collection of algorithm for classifying life trajectories
- Originally developed for genetic analyses
- Used increasingly by demographers & sociologists

Optimal matching algorithm

- OMA: a family of classification algorithm for sequences
- Compute a distance between 2 sequences as a function of the amount of edit operation needed to transform one sequence into the other
- Three operations
 - Insertion
 - Deletion
 - Substitution
- Cost defined for each operation: distance is sum of costs

Example

S A T U R D A Y S U N D A Y

S A T U R D A Y S A T U R D A Y (2 x Deletion) S U N D A Y (1 x Substitution)

OM algorithm: model

 $S = \{S_1, \ldots, S_T\}$ a vector random variable with state space $\Sigma = \{\sigma_1, \ldots, \sigma_K\}$

Realizations:

Biography for individual i is $s_i = \{s_{i1}, \ldots, s_{iT}\}$

(unit of study)

OM algorithm

 $\omega: \Sigma \to \Sigma$ (operators)

 $\omega \in \Omega$, where $\Omega = \{$ ins, del, sub $\}$ (operator set)

 $c(\omega): \Omega \to \mathcal{R}^+$

Two biographies s_1 and s_2 such that

$$s_2 = \omega_1 \circ \omega_2 \circ \cdots \circ \omega_J(s_1) = \omega_.(s_1)$$

OM algorithm

Two biographies s_1 and s_2 such that

$$s_{2} = \omega_{1} \circ \omega_{2} \circ \cdots \circ \omega_{J}(s_{1}) = \omega_{.}(s_{1})$$
$$c(\omega_{.}) = \sum_{j=1}^{J} c(\omega_{j}) \qquad (\text{cost of the operation})$$

$$\mathcal{D}(s_1, s_2) = \min_{\omega_{\cdot}} \{ c(\omega_{\cdot}) \text{ s.t. } s_2 = \omega_{\cdot}(s_1) \}$$

(distance between s_1 and s_2)

Clustering algorithms using

(distance between s_1 and s_2)

Family life trajectories

- all women born 1935 in Sweden
- Family trajectories for the period 1990-2006 (17 years)
 10 first sequences

Family life courses: state frequencies

OMA: clusters of family life trajectories

Freq. (n=2832)

0.6

0.0

One generation

Two generation

Dispersed three generation

no par, no child, no g_child no par, child close, no g_child no par, child close, g_child close no par, child close, g_child far no par, child close, g_child far no par, child far, no g_child par close, no child, no g_child par close, child ather, no g_child par close, child close, g_child close par close, child ather, g_child par ar close, child ather par close, child ather, g_child par ar close, child ather par close, child ather, g_child par far, child chose, g_child par far, child close, g_child par far, child close, g_child par far, child close, g_child far par far, child close, g_child far par far, child far, g_child far

Local four generation

STATE1990 STATE1995 STATE2000 STATE2005

Relocated slow starter

Description and inference

- Description (dimension reduction)
- Inference: life trajectories are either outcomes, covariates or control variables

 \rightarrow I give examples of all these

TriMineR package is used for OM

Categories as outcome

 Table 2: Results from multinomial regression model of variables associated with family life course categories. Local three generation used as reference category.

		"One generation" versus "Local Three	"Dispersed three generation" versus "Local Three	"Two generation" versus "Local Three	"Local four generation" versus "Local Three	starter crowded nest" versus "Local Three	"Relocated four generation" versus "Local Three	"Relocated slow starter" versus "Local Three
Variable	Values	generation	generation	generation	generation	generation	generation	generation
Region	Sparsely populated (ref) Accessible	-	-	-	-	-	-	-
	countryside	0,742*	0,434**	1,110	1,619*	0,471**	1,010	0,856
	Urban	0,775*	0,314**	1,607*	1,537*	0,380**	1,505	0,884
Marital	Single (ref)		-	-	-	-	-	-
status	Married	0,247**	0,777**	0,737**	0,956	1,001	0,953	1,258*
Education	Low (ref)		-	-	-	-	-	-
	Medium	1,111*	1,483**	1,124*	0.860**	0,947	1,374**	1,908**
	High	1,977**	3,483**	1,318**	0,725**	1,468**	1,851**	5,452**
Income	No (ref)	-	-	-	-	-	-	-
	Yes	0,527**	0.793**	0,712**	1,101	0,536**	0,525**	0,816

** Significant at 1%**

* Significant at 5%

Categories as covariates

Hazard Variable Values ratio p-value Region Sparsely populated (ref) _ Accessible countryside 0.888** 0.004 Urban 0,883** 0,003 Marital status Single (ref) 1,049** 0,000 Married Education Low (ref) 1.092** Medium 0,000 High 0.987 0,402 "Local three generation" (ref) Family group _ "One generation" 1.071** 0.001 "Dispersed three generation" 1,015 0,446 "Two generation" 0.959 0.061 "Local four generation" 0,968 0,142 "Slow starter crowded nest" 0.889** 0.000 "Relocated four generation" 0,903 1,003 "Relocated slow starter" 0,894* 0,002

Table 1: Variables associated with time to retirement usingCox Regression analysis

** Significant at 1%

* Significant at 5%

Effect of retirement timing on health

- Difficult to study because health before retirement affect both decision to retire AND health after retirement
- We propose to control for health biographies before retirement timing

Data

- Sample: born in Sweden 1935→1946 and resident in Sweden 1990
- Follow-up period: 1990 to 2006
- E.g.: 86'054 individuals born 1935

Retirement timing T

				<u> </u>
Retirement age	Men	(Cumulative $\%$)	Women	(Cumulative %)
before 60	57,725	10.42	42,162	7.71
60	$16,\!075$	13.33	$11,\!389$	9.79
61	$28,\!457$	18.47	$21,\!043$	13.64
62	$21,\!607$	22.37	$19,\!453$	17.19
63	$21,\!815$	26.31	$21,\!402$	21.11
64	$21,\!253$	30.14	$27,\!665$	26.16
65	$98,\!975$	48.02	$115,\!290$	47.24

Health: # of days in hospital

57 58 59 60 61 62 63 64 65 66 67

age

- Controls - Treatment

0.5

0.0

58 59 60

0.5

0.0

0.0

55 56 57

58 59 60 61 62 63 64 65

age

— Controls — Treatment

0.0

56 57 58

59 60 61 62 63 64 65 66

age

- Controls - Treatment

T T

62 63 64 65 66 67 68 69

age

- Controls - Treatment

0

0.0

59 60 61

. .

61 62 63 64 65 66 67 68

age

- Controls - Treatment

Parameter and identification

T = 1: retires at age 61 T = 0: retires later

Potential outcomes: $Y(T \leftarrow 1)$ and $Y(T \leftarrow 0)$

Average causal effect:
$$\tau = E(Y(1) - Y(0))$$

Parameter and identification

T = 1: retires at age 61 T = 0: retires later

Potential outcomes: $Y(T \leftarrow 1)$ and $Y(T \leftarrow 0)$

Average causal effect: $\tau = E(Y(1) - Y(0))$

If $Y(0), Y(1) \perp T | \mathbf{X} \text{ and } 0 < \Pr(T = 1 | \mathbf{X}) < 1$ then $\tau \text{ is identified from p.d.f.}(Y, T, \mathbf{X})$ Y = TY(1) + (1 - T)Y(0)

Design of a study by matching

Random sample from p.d.f. (Y, T, \mathbf{X})

 n_1 retired, n_0 not retired (control)

For each treated unit $i = 1, \ldots, n_1$

pick up a control which has same \mathbf{X} .

Retired average outcome: \bar{Y}_1 Matched control: \bar{Y}_0

$$\hat{\tau} = \bar{Y}_1 - \bar{Y}_0$$

consistent because distr ${\bf X}$ is balanced among retirees and control

Dimension reduction

Definition:

 $b(\mathbf{X})$ is a <u>balancing score</u> if $T \perp \mathbf{X} | b(\mathbf{X})$

Result (Rosenbaum & Rubin, 1983):

If $Y(0), Y(1) \perp T | \mathbf{X}$ and $0 < \Pr(T = 1 | \mathbf{X}) < 1$

then

 $Y(0), Y(1) \perp\!\!\!\perp T | b(\mathbf{X})$

Propensity score

e(X) = Pr(T = 1 | X) is a balancing score

(Rosenbaum & Rubin, 1983)

$$\rightarrow$$
 match for $e(\mathbf{X})$ (a scalar)
need to be modelled and fitted

Health biographies

Design of the study

• We strive at balancing X for T = 1 and T = 0, where

 $\mathbf{X} = \{\mathbf{X}^b, \mathbf{S}\}$

- We consider three designs by matching on either
 - $-e(\mathbf{X}^b)$ (one-to-one matching on the propensity score)
 - **S** (one-to-one optimal matching)
 - Both (matching on combined distance)

Matching on combined distance

 \mathcal{D}_e and \mathcal{D}_s

(propensity score distance and OM distance)

$$\mathcal{D}_c(x_1, x_2) = \frac{1}{\max_{k,l} \mathcal{D}_e(x_k^b, x_l^b)} \mathcal{D}_e(x_1^b, x_2^b) + \frac{1}{\max_{k,l} \mathcal{D}_s(s_k, s_l)} \mathcal{D}_s(s_1, s_2)$$

Balancing properties

	retirees	controls	p-val	HB match	p-val	PS match	p-val	Comb	p-val
hosp t-5	0.501	0.69	0	0.525	0.561	0.425	0.019	0.399	0.001
hosp t-4	0.52	0.676	0	0.501	0.633	0.445	0.022	0.434	0.008
hosp t-3	0.626	0.703	0.008	0.635	0.841	0.537	0.038	0.518	0.005
hosp t- 2	0.73	0.733	0.918	0.662	0.149	0.677	0.312	0.735	0.935
hosp t-1	0.934	0.798	0.002	0.788	0.013	0.959	0.749	0.905	0.683
unempl t-5	0.045	0.094	0	0.095	0	0.04	0.01	0.039	0.001
unempl t-4	0.05	0.104	0	0.109	0	0.048	0.355	0.046	0.089
unempl t-3	0.065	0.111	0	0.117	0	0.067	0.368	0.066	0.675
unempl t-2	0.097	0.115	0	0.124	0	0.115	0	0.112	0
unempl t-1	0.057	0.119	0	0.126	0	0.065	0	0.067	0
low education	0.301	0.453	0	0.437	0	0.317	0	0.322	0
med education	0.427	0.365	0	0.369	0	0.413	0.003	0.416	0.018
high education	0.272	0.182	0	0.194	0	0.269	0.53	0.262	0.017
married	0.715	0.7	0	0.727	0.006	0.732	0	0.74	0
partner retired	0.061	0.042	0	0.041	0	0.063	0.476	0.066	0.021
$income^*$	2597.123	2414.627	0	2513.814	0	2378.221	0	2385.619	0

*(5 years before)

Balancing properties

Matched controls (health trajectories) 61. man

Here (u-seque)

No hospital
No Hospital/Sick-benefit
No Hospital/invalidity benefit
No Hospital/both benefit
1 day
2 days
3 days
3+ days

32

Balancing and effects

33

No effect on #days in hospital

Censoring

- Sequences of different length due to
 - Censoring by beginning or end of follow up
 - Alignment of sequences
 - Truncate sequences to same length when matching
 - Censoring by death
 - Health outcomes not defined after death
 - Analysis on survivors AND survival analysis

Effect on survival

Concluding

Large and rich longitudinal micro-data:

New opportunities:

complex unit of studies: Here biographies

Challenges for statisticians: descriptive and visualization tools dimension reduction methods inference: models and theory

