On the choice of doses for phase III clinical trials

Vera Lisovskaja, Ph.Lic. Chalmers / Göteborg University

Carl-Fredrik Burman, PhD, Assoc Prof Senior Principal Scientist AstraZeneca R&D Mölndal

Challenges to development of new medicines

- Huge medical needs
- but # of new pharmaceuticals is decreasing
- Average development cost of the order 1 BUSD per new pharmaceutical
- Failure rate in clinical development may be 90%
- High requirements on ethics of clinical trials

Lots of suggested remedies

- Omics
- Biomarkers
- Adaptive Designs
- Model-Based Drug Development
- ...

Key decisions in clinical development

- Programme and study design
- Dose
 - Dose-finding trials (phase II) are often too small to determine precisely the best dose
 - Has been suggested (e.g. by regulators) that two, rather than one, dose should be tested in confirmatory trials (phase III)

Dose(s) in phase III ?

- Based on prior information, maximize P(prove at least one dose to be efficacious and "safe")
- Research questions
 - Find best dose for ph III
 - Find best pair of doses
 - Is one or two doses optimal?
 - Robustness

Efficacy

- E_{max} model
- Parameters assumed known (may be relaxed)
- Stochastic data \rightarrow Power function

Safety

- True "Maximum Tolerated Dose" (MTD)
- Will observe whether doses in trial are <MTD
- Dose d is "safe" iff d<MTD
 Log dose follows probit model: P(safe) = q(x) = Φ(a·(b-x))
- (Bayesian prior + non-stochastic outcome)
- NB! Monotonicity: A lower dose cannot be "unsafe" if a higher dose is "safe"

a=1 (shape parameter) and $b \in [-2,3]$ (location parameter)

- Case 1: One active dose, d, vs placebo

 Equal split of total sample size
- Case 2: Two active doses, d₁ and d₂, vs placebo
 - Bonferroni correction
 - Sample size $\sqrt{2}$ larger in placebo arm
 - (May be relaxed)
- Optimal doses marked by *
 - One dose d^*
 - Two doses d_1^* , d_2^*

ΔPoS=PoS(2 doses)-PoS(1 dose).

A number of factors may make two doses relatively more attractive

- Uncertainty in efficacy, e.g. prior on ED₅₀
- Optimal multiplicity procedure
- Optimal sample size split

Difference in PoS, 2 vs 1 dose

	Weight	Recycling	Correlation	Scenario 1	Scenario 2
Bonferroni	No	No	No	-0.053	-0.024
Weighted Bonferroni	Yes	No	No	-0.052	-0.022
Holm	No	Yes	No	-0.026	+0.000
Weighted Holm	Yes	Yes	No	-0.012	+0.011
Dunnett	No	No	Yes	-0.045	-0.019
WD	Yes	No	Yes	-0.044	-0.018
RD	No	Yes	Yes	-0.022	+0.002
WRD	Yes	Yes	Yes	-0.011	+0.011

Smarter multiplicity corrections make 2 doses more interesting

Scenario 1 corresponds to power=0.8, PoS=0.6 (1 dose, Bonferroni) Scenario 2 corresponds to power=0.9, PoS=0.7 (1 dose, Bonferroni)₇ Red curves are boundaries for 2 doses vs 1 dose (2 doses better to the left),

Ongoing work

- Prior on ED₅₀
 - Leads to larger d_2^*/d_1^* ratio
 - More favorable for 2 active doses
- Prior dependence between efficacy & safety
- Optimal split of sample size
- Pooled analysis with closed testing

19

Discussion, doses in phase III

- Can define optimal dose(s)

 Requires explicit assumptions and criteria (cf. model-based drug development)
- One active dose is clearly best ... under "naïve" assumptions and multiplicity corrections
- Move to more sophistication (and two doses might be better)
 - Prior for efficacy
 - Optimal multiplicity and sample size split
- Do we have to correct for multiplicity when higher dose is "unsafe"?

General comments

- Multitude of highly relevant research problems
- Need more scientists involved
- ... and need to spread results in the industry